Additional data for "Understanding and predicting defect formation in automated fibre placement pre-preg laminates", published in Composites Part A: Applied Science and Manufacturing

Jonathan P.-H. Belnoue, Tassos Mesogitis, Oliver J. Nixon-Pearson, James Kratz, Dmitry S. Ivanov, Ivana K. Partridge, Kevin D. Potter and Stephen R. Hallett

A.1 Cure kinetics model

The cure reaction rate, \dot{x} of 8552 epoxy resin can be computed as follows [1]:

$$\dot{x} = \left(\frac{1}{\dot{x}_k} + \frac{1}{\dot{x}_d}\right)^{-1} \tag{1}$$

Here \dot{x}_k is the chemically controlled part of the reaction, defined as follows [1]:

$$\dot{x}_k = \left(\frac{1}{\dot{x}_{c1}} + \frac{1}{\dot{x}_{i2} + \dot{x}_{c2}}\right)^{-1} + \dot{x}_e \tag{2}$$

where for each reaction \dot{x}_{c1} , \dot{x}_{i2} , \dot{x}_{c2} and \dot{x}_{e}

$$\dot{x}_i = K_{0_i} e^{-\frac{E_{a_i}}{RT}} (1 - x)^{l_i} \left(\frac{1}{r} - x\right)^{m_i} (x^{n_{2_i}} + b_i)^{n_i}$$
(3)

Here *x* is the instantaneous degree of cure.

 \dot{x}_d expresses the diffusion controlled part of the reaction and is defined as follows [1]:

$$\dot{x}_d = k_{d_0} e^{-\frac{B}{f}} \tag{4}$$

where

$$f = a_f (T - T_g) + b_f \tag{5}$$

Here a_f and b_f are calculated as follows:

where

$$S_a = \frac{a_2 - a_1}{T_{g_{a2}} - T_{g_{a1}}} \tag{7}$$

and

$$C_a = a_2 - S_a T_{g_{a2}} \tag{8}$$

Similarly,

where

$$S_b = \frac{b_2 - b_1}{T_{g_{h2}} - T_{g_{h1}}} \tag{10}$$

and

$$C_b = b_2 - S_b T_{g_{h_2}} (11)$$

Here T_g represents the glass transition temperature and is described by the DeBenedetto equation as follows:

$$T_g = T_{g0} + \frac{\lambda x \left(T_{g\infty} - T_{g0} \right)}{1 - (\lambda - x)x} \tag{12}$$

The total heat of reaction, H_T of the resin system of this study is 600 J/g [1]. In addition an initial degree of cure, x_0 of 0.05 was assumed [1].

Table A.1 summarises all the parameters used in the Eqns. (1)-(12).

Table A.1. Cure kinetics parameters.

Parameter	Value				Units
	\dot{x}_{c1}	\dot{x}_{i2}	\dot{x}_{c2}	\dot{x}_e	
k_0	153900.5	1000	1000	3.963E+11	1/s
E_a	64.929.5	0	0	133168.3	J/mol
l	2.347	0	0	1.029	
r	1	1	1	1	
m	0	0	0	0	
n_2	1	0	0	1	
b	0.1594	1	1	0	
n	1.413	0	0	5.586	
k_{d0}		1/s			
В					
a_1		1/°C			
a_2		1/°C °C			
$T_{g_{a_1}}$		°C			
$T_{g_{a2}}$		°C			
b_1	0.021				
b_2					
$T_{g_{h_1}}$		°C			
T_{g0}		°C			
$T_{g\infty}$		°C			
$T_{g_{b2}}$	250				°C
λ	0.78				

A.2 Specific heat capacity

The resin specific heat capacity is defined as follows [1]:

$$c_{pr} = c_{prb} + \frac{c_{pg} - c_{prb}}{1 - e^{k[(1 - T_g) - \Delta T_c]}}$$
(13)

where

$$c_{pi} = (1 - x)c_{pi0} + xc_{pi\infty}$$
 for $i = rb, g$ (14)

and

$$c_{pij} = s_{ij}T + c_{ij}$$
 for $i = rb, g$ and $j = 0, \infty$ (15)

Here T is the temperature. The fibre specific heat capacity, c_{pf} is calculated as follows [2]:

$$c_{pf} = 750 + 2.05T \tag{16}$$

The specific heat capacity of the composite is expressed using the rule of mixtures:

$$c_p = w_f c_{pf} + (1 - w_f) c_{pr} (17)$$

Here w_f is the fibre weight fraction and is defined as:

$$w_f = \frac{v_f \rho_f}{\rho} \tag{18}$$

where v_f is the fibre volume fraction, ρ_f and ρ is the fibre density and composite density, respectively. A v_f of 0.55 was assumed in this study. The composite density is computed using the rule of mixtures as follows:

$$\rho = v_f \rho_f + (1 - v_f) \rho_r \tag{19}$$

where ρ_r is the density of the resin. The parameters in Eqns. (13)-(19) are listed in Table A.2.

Parameter value Units kg/m³ 1301 ρ_r 1790 kg/m³ ρ_f $J/(kg °C^2)$ 3.775 s_{g0} 730 J/(kg °C) C_{q0} 3.4 $J/(kg °C^2)$ $s_{g\infty}$ 830 J/(kg °C) $c_{g\infty}$ J/(kg °C 2) 3.27 s_{r0} J/(kg °C) 1088 C_{r0} $J/(kg °C^2)$ 2 $s_{r\infty}$ J/(kg °C) 1350 $C_{r\infty}$ 0.278 1/°C k ΔT_c -1.5

Table A.2. Specific heat capacity parameters.

A.3 Thermal conductivity

The thermal conductivity of the resin is calculated as follows [1]:

$$k_r = Ak_r + Bk_r T + Ck_r x (20)$$

The fibre thermal conductivity in the longitudinal direction is defined as [2]:

$$k_{lf} = Ak_{lf} + Bk_{lf}T (21)$$

The thermal conductivity of the fibre in the transverse direction is [2]:

$$k_{tf} = Ak_{tf} + Bk_{tf}T (22)$$

The thermal conductivity of the composite in the longitudinal direction is computed using the rule of mixtures as follows:

$$k_{11} = v_f k_{lf} + (1 - v_f) k_r (23)$$

In the transverse direction the thermal conductivity can be computed as follows [3]:

$$k_{22} = k_{33} = v_f k_r \left(\frac{k_{tf}}{k_r} - 1\right) + k_r \left(\frac{1}{2} - \frac{k_{tf}}{2k_r}\right) + k_r \left(\frac{k_{tf}}{k_r} - 1\right) \sqrt{v_f^2 - v_f + \frac{\left(\frac{k_{tf}}{k_r} + 1\right)^2}{\left(\frac{2k_{tf}}{k_r} - 2\right)^2}}$$
(24)

Table A.3 summarises all the parameters used in Eqns. (20)-(24).

Parameter value Units Ak_r 0.148 W/m/°C $W/m/^{o}C^{2}$ Bk_r 3.43E-04 W/m/°C Ck_r 6.07E-02 Ak_{lf} W/m/°C 7.69 $W/m/^{\circ}C^{2}$ 1.56E-02 Bk_{lf} W/m/°C Ak_{tf} 2.4 5.07E-04 $W/m/^{\circ}C^{2}$ Bk_{tf}

Table A.3. Thermal conductivity parameters.

A.4 Consolidation model parameters

The material parameters used in the model for consolidation of the material system IM7-8552 are given in Table A.4. The procedure for parameter extraction from simple consolidation tests is described in [4]. The parameters a and b control the behaviour of the rate dependent term of the apparent viscosity ($b_{squeeze}$ and b_{bleed} are the values of b before and after locking respectively). The parameter k controls the size of the inter-fibre channels at the micro-scale.

Table A.4. Consolidation model parameters.

Tempertaure (°C)	k	а	$b_{squeeze}$	b_{bleed}
30	0.949073376	-0.9302	-16.51	-33.24
40	0.919238734	-0.9124	-15.01	-31.74
50	0.884086642	-0.8822	-14.12	-30.85
60	0.850373593	-0.856	-13.58	-30.31
70	0.823853122	-0.8434	-13.27	-30
80	0.806058649	-0.8391	-13.08	-29.81
90	0.795357049	-0.8378	-12.96	-29.69

References

- [1] Johnston A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures: University of British Columbia; 1997.
- [2] Van Ee D, Poursartip A. HexPly 8552 MATERIAL PROPERTIES DATABASE for use with COMPRO CCA and Raven. . 2009.
- [3] Farmer J, Covert E. Thermal conductivity of a thermosetting advanced composite during its cure. Journal of Thermophysics and Heat Transfer(USA) 1996;10(3):467-475.
- [4] Belnoue JPH, Nixon-Pearson OJ, Ivanov D, Hallett SR. A novel hyper-viscoelastic model for consolidation of toughened prepregs under processing conditions. Mechanics of Materials. 2016;97:118-34.