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S.1 Overview of the mathematical model

A flow diagram of the interconnecting sub-models is shown in Figure S.1. Each individual component
of the model was described in outline in the each subsection of Section 5 in the main text and in more
detail below. All the sub-model components were developed in Matlab.

Figure S.1: Flow diagram of the interconnecting models: (A) dose-dependant agglutination clustering,
using Becker-Döring theory; (B) magnetic force on an individual PMP; (C) dynamics of PMP clusters;
(D) inductive sensor model; (E) inductive response to PMP clusters; (F) simulation model of the complete
assay.

The main assumptions underlying our mathematical model can be summarised as follows.

1. Agglutination forms chain-like clusters of bacteria and PMPs. Although evidence shown in Sec-
tion 2.6 suggests the clusters are more complex than this, it has been employed for simplicity of
the model.

2. The assumed maximum number Nmax of PMPs in a chain, is likely to be a large underestimate.
One resolution is to think of a single model PMP as in truth representing a cluster of PMPs.
Another point of view is to think that the only important output from the model is a realistic
distribution of cluster sizes, in some arbitrary units of largest to smallest, as a function of bacterial
dose.

3. All PMPs in a cluster occupy the same z-position i.e. experience the same B-field. This approx-
imation is valid given the scale of clusters relative to the spatial change in magnetic flux density,
and can be thought of as representing a cluster by its centre of mass, so that a cluster is equated
to a single PMP with an effective radius of reff = rpmp

3
√
N .

4. In our model, clustering of PMPs does not affect the effective magnetic susceptibility, χ, of each
PMP at a given B-field. While we believe this effect is likely to make little difference, more complex
modelling would be required to quantify any necessary connection.
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Figure S.2: The ten possible species types considered in an extended Becker-Döring equation model with
up to three PMPs per cluster. The subscript number represents the number of PMPs in that species.

5. In the model, the PMP clusters are assumed to travel along a single straight line axially away
from the inductive sensors. This is reasonable, given the sharp tunnel-like structure seen in in
the experiments as the particles move (see Figure. 1.c), but full 3D modelling of trajectories could
enable this assumption to be further tested.

6. The model simulates a magnet at rest at position z = d (see Figures 4 & 2.b) at time t = 0,
while Bm = 0 when t < 0. In reality the magnet moves into position above the chamber, thereby
introducing an increasing magnetophoretic force with time until coming to rest. This simplifying
assumption is not likely to be particularly significant, and is a reasonable first guess without precise
information on the magnets motion.

7. Magnetic self-assembly of ‘naked’ PMPs into larger structures (i.e. chains Messina, Khalil and
Stankovic (2014)) in the presence of an external magnetic field is ignored. We believe this assump-
tion is a likely dominant cause of error, especially at high magnetic field strengths. Essentially, our
model assumes that clustering only occurs due to agglutination, and ignores this other mechanism
for the formation of clusters. Nevertheless, the results in Fig. 3.b suggest this effect may have
saturated at the concentrations of pmp/ml used. Future work will explore the relative importance
of the two effects, in order to design an optimal operating point for the assay.

S.2 Becker-Döring equations for bacterial-PMP chain forma-
tion

The basic idea of the model is to produce a combinatorial set of rate equations for the creation of chains
of length n, for n between 1 and some theoretical maximum N . Here we have adapted the usual Becker-
Döring formalism system to allow for chain formation to occur via several separate steps, each of which
occurs with a different assumed reaction rate (binding affinity); see Figure S.2. First, a free bacterium
can bind to a chain that has two ‘free’ PMP ends. Alternatively, a bacterium can bind to a chain with a
single free PMP. Also, a PMP can bind to a chain with either one or two bacteria at its end. Thus there
are three different kinds of chains of n PMPs as depicted in Figure S.2 for n = 0, . . . , 3.

One of the difficulties in quantitative comparison between model and experiment is to get reliable
estimates for binding affinity. For simplicity in the model, we assume that the binding affinities for each
of the steps depicted in Figure S.2 are equal. By making this assumption, we can assume a suitable
rescaling of time so that we can run the model with a non-dimensional binding affinity of unity. The
downside of such an assumption is that the time constant of the system to reach steady state will be
unknown, without detailed information on the binding affinities.

This simple Becker-Döring-like model was extended to include the possibility of chains of length n1

binding with chains of length n2 for n1,2 > 1. Typically, such reactions will occur with a lower affinity
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Figure S.3: The seven species types possible in the N = 2 chain model. The subscript number represents
the number of PMPs in that species. Also, Pn represents a species containing one more PMP than
bacteria, Cn represents a species containing an equal amount of bacteria and PMPs and Bn represents a
species containing one more bacterium than PMPs.

than reactions that involve single PMPs or bacteria joining a chain, so we introduced a dimensionless
parameter κ > 0 so that a reaction involving binding of chains of length n = min{n1, n2} is assumed to
occur at rate k/(1+nκ) where k is the rate of binding of the corresponding monomer (either a bacterium
or a PMP). Intuitively κ = 0 means all reactions occur with equal probability where as κ > 0 means
that longer chains bind with less probability than shorter ones.

Using the simple law of mass action kinetics, reaction-rate equations can be written down for the
creating and destruction of each of the species Bn, Cn and Pn, as depicted in Figure S.2 for n = 3, for
all n ≤ N .

The fundamental principle of modelling chain formation is to use the law of mass action. In this model
the value N represents the maximum number of PMPs in any one species type. The model follows some
simple principles, but is moderately complex to write out in full. Therefore we shall adopt an approach
of describing first the case where N = 2, in this case there would be six different species types as shown
in Figure S.3. The number of different types of species for a certain value of N is therefore 3N + 1.

S.2.1 The 2-chain model

Taking inspiration from the Becker-Döring model by Ball, Carr and Penrose (1986), it is assumed that
a species that is neither B0 or P1 can only join to species B0 or P1, as B0 and P1 are acting as the
monomer in the Becker-Döring equations. For example, if N = 2 the reaction equations are

B0 + P1
2k1−−→ C1, (S.1a)

B0 +C1
k1−→ B1, (S.1b)

P1 +C1
k2−→ P2, (S.1c)

P1 +B1
2k2−−→ C2, (S.1d)

B0 + P2
2k1−−→ C2, (S.1e)

B0 +C2
k1−→ B2, (S.1f)
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where the reaction rate constant for joining species B0 to another species is k1 and the reaction rate
constant for joining species P1 to another species is k2. When there are two binding sites available for
the B0 or P1 species to join to, the reaction rate constant is doubled. Also, note that it is assumed that
reaction (S.1a) consists of adding the species B0 to another species rather than the other way around.
This assumption was made because bacteria are less dense so can move more quickly than the species
P1.

To turn the above chemical equations into differential equations for the concentration of each chemical
species, we use the law of mass action. First though we non-dimensionlise so that pi(t), bi(t) and ci(t)
represent the concentrations of p-type b-type and c-type species with respect to a given concentration
scale and time scale. It is convenient to measure concentration with respect to the initial population of
free PMPs, that is p1(0) = 1, and to measure time so that k1 = 1. This introduces two dimensionless
parameters into the model: β which is ratio of initial concentration of b0, divided by the initial con-
centration of p1; and κ which is the ratio of k1 to k2. Note that β is a convenient parameter as it is
effectively the dose of the target, whereas it is hard to gain quantitative information on κ. Nevertheless
we found little qualitative change in our simulations as κ was varied, so all simulation results reported
are for κ = 1.

Under these assumptions, the rate equations for the N = 2 chain model become

db0
dt

= −2b0p1 − b0c1 − 2b0p2 − b0c2, (S.2a)

dp1
dt

= −2b0p1 − κp1c1 − 2κp1b1, (S.2b)

dc1
dt

= 2b0p1 − b0c1 − κp1c1, (S.2c)

db1
dt

= b0c1 − 2κp1b1, (S.2d)

dp2
dt

= κp1c1 − 2b0p2, (S.2e)

dc2
dt

= 2κp1b1 + 2b0p2 − b0c2, (S.2f)

db2
dt

= b0c2, (S.2g)

where tc =
1

k1A
and κ = k2

k1
.

Given that the total number of PMPs and bacteria must be conserved, these equations are subject
to two constraints

b0 = β − c1 − 2b1 − p2 − 2c2 − 3b2, (S.3a)

p1 = 1− c1 − b1 − 2p2 − 2c2 − 2b2, (S.3b)

which can be used to reduce the seven-dimensional system (S.2) to a five-dimensional system as necessary.
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S.2.2 The general N-chain model

Using the model for N = 2 as a guide and following the same assumptions, the equations needed for any
value of N can be determined. Firstly, it was deduced that there are only four possible different types
of chemical step involving chains of length n ≤ N , namely

B0 + Pn
2k1−−→ Cn for n = 1 ... N, (S.4)

P1 +Bn
2k2−−→ Cn+1 for n = 1 ... N− 1, (S.5)

B0 +Cn
k1−→ Bn for n = 1 ... N, (S.6)

P1 +Cn
k2−→ Pn+1 for n = 1 ... N− 1. (S.7)

For a particular value of n, there are three distinct cases, in order to calculate all of the non-dimensionalised
rate equations. As before, κ = k2

k1
.

Case 1: 0 ≤ n ≤ 1. The first four rate equations are

db0
dt

= −
N∑

n=1

2b0pn −
N∑

n=1

b0cn,

dp1
dt

= −2b0p1 − (

N−1∑
n=1

2κp1bn)− (

N−1∑
n=1

κp1cn),

dc1
dt

= 2b0p1 − b0c1 − (κp1c1),

db1
dt

= b0c1 − (2κp1b1),

where the terms in brackets only occur when N > 1.
Case 2: when 2 ≤ n ≤ N − 1 the next group of rate equations are

dpn
dt

= κp1cn−1 − 2b0pn,

dcn
dt

= 2κp1bn−1 + 2b0pn − b0cn − κp1cn,

dbn
dt

= b0cn − 2κp1bn.

Case 3: for n = N the last three rate equations are

dpN
dt

= κp1cN−1 − 2b0pN ,

dcN
dt

= 2κp1bN−1 + 2b0pN − b0cN ,

dbN
dt

= b0cN .

Upon assuming that the total number of bacteria and PMPs are each conserved quantities, we get
the following two constraints that can be used to eliminate two variables from the model:

b0 = β − c1 − 2b1 −
N∑

n=2

((n− 1)pn + ncn + (n+ 1)bn) , (S.11a)

p1 = 1− c1 − b1 −
N∑

n=2

(npn + ncn + nbn) . (S.11b)

Thus the system of 3N + 1 rate equations is reduced to a system of 3N − 1 rate equations.
The N -chain model system depends on parameters β, κ and N , in exactly the same way as the

2-chain model.
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Figure S.4: Results of an initial simulation of the extended N chain model with β = 1, κ = 1. (a)
Illustrates when N = 3. (b) Illustrates when N = 5.

Figure S.5: Dose-response curves (here b̂0(0) on the horizontal axis is β) for varying values of κ with
T = 50. (a) Illustrates when N = 10. (b) Illustrates when N = 20.

S.2.3 Model simulation results

The output from an example simulation is shown in Figure S.4. Intuitively, since forward reaction
rates dominate reverse rates, one might expect that provided there are sufficient initial bacteria, then
the model might ‘run away’ so that the steady state distribution is dominated by chains of maximum
possible length, perhaps a single chain of length N . That this is not the case, can be understood from the
conservation of total number of PMPs and bacteria. As longer chains are produced, so either bacteria
or PMPs (whichever is not excess) are ’used up’, leaving a tail of chains of smaller than maximal length.

Figure S.5 shows information on the final steady state reached measured by the mean cluster size,
and as a distribution of cluster sizes. Here, we see a detailed shape of a dose response that rises rapidly,
largely independently of the parameter κ, up to a peak value when the ratio β of target to PMP is 1. For
excess target, the average cluster size decreases. While the peak reached is a function of the unknown
parameter κ, we note that the response curve of cluster size versus β has the same characteristic shape
in all cases. Moreover the size of the peak of this curve appears to scale approximately linearly with
the maximum cluster size N — cf. panels (a) and (b) of Fig. S.5) which are for N = 10 and N = 20
respectively. Figure 4.c shows that in fact, the cluster sizes for β close to unity are actually widely
distributed.
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Figure S.6: Magnetophoretic force on a PMP. (a) The geometry of the magnetic field theoretical current
loop model relative to the permanent magnet position. (b) The magnetic flux-density, Bm, of the
permanent magnetic used to perform magnetophoresis on PMP’s showing experimental measurements
compared to a Biot-Savart current loop model. (c) The experimentally measured magnetic susceptibility
of 2.8 µm Dynabeads® as a function of the magnetic flux density, from Grob et al. (2018), along with
a line of best. (d) The magnetic force acting on a PMP as a function of relative position to the face
of the permanent magnet for different constant magnetic susceptibilities and the magnetic flux density
dependant susceptibility from (c).

S.2.4 Magnetophoresis

We give here more details of the model developed in Section 5.2 of the main text.

S.2.4.1 Magnetic Flux Density Bm and Force F p
m on a PMP

The magnetic flux-density of the permanent magnet was experimentally measured along it’s z-axis (the
vertical co-ordinate direction which separates the ‘top’ and ‘bottom’ of the chamber, which is also aligned
with gravity) using a Hall-effect sensor. The results are shown in Fig. S.6 are compared to the simulated
magnetic flux-density calculated using the Biot-Savart law for a current loop Griffiths (2008). The model
can be expressed for a permanent magnet of height h and radius a, with its face located a distance d
from the bottom of the assay chamber (i.e. z = 0) by the general form,

Bm =
B0a

3[
(z − d0)

2
+ a2

]3/2 ẑ, (S.12)

where a is the radius of the magnet/current-loop and B0 is the magnetic flux density in the plane of the
current loop (at z = d0 = d+ h/2 mm). B0 is calculated from the measured value at the surface of the
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permanent magnet (z = d mm). This expression can be used to estimate the force on a single PMP, Fm
p

Shevkoplyas, Siegel, Westervelt, Prentiss and Whitesides (2007),

Fm
p =

Vp∆χ

µ0
(Bm · ∂

∂z
)Bm, = 3

Vp ∆χ

µ0

B0
2 a6 (d− z)[

a2 + (d− z)
2
]4 ẑ, (S.13)

where ∆χ is the difference in magnetic susceptibility χp between the PMP and the surrounding medium,
µ0 is the magnetic permeability of free space and Bm is the magnetic flux-density of the permanent
magnet. For the assay in question, the surrounding medium is a water-like fluid;whose magnetic suscep-
tibility can be assumed to be negligible. But to create the final expression for the magnetic force on a
PMP given in the main text, we need to estimate the the magnetic susceptibility χp of the particle.

S.2.5 Estimating magnetic susceptibility χp

In the literature, values for the magnetic susceptibility of 2.8 µm Dynabeads® ranges between 0.15-0.70
Fonnum, Johansson, Molteberg, Mørup and Aksnes (2005); Sinha, Anandakumar, Oh and Kim (2012);
Grob et al. (2018). These bounds are shown in Fig. S.6.d, relative to the gravitational force, Fg, for the
predicted magnetic force acting on a single PMP, calculated using (S.13). It predicts that the magnetic
force acting on a single PMP of χp = 0.15 will not overcome Fg if the PMP is more than 6 mm from
the face of the permanent magnet, while a PMP of χp = 0.7 will overcome Fg up to 8 mm. However, it
is well-documented that χp is dependant on the applied magnetic field strength, and as such will vary
as a function of z. Grob et al. (2018) provide experimentally measured Bm verse the magnetisation
M curve data for 2.8µm Dynabeads® up to ±80 mT. This data was used to predict the susceptibility,
χp = µ0M/(B − µ0M), as a function of Bm(z) shown in Fig. S.6.c. A best fit was made to the data
with the form,

χp(z) =
1

c1Bm(z) + c2
(S.14)

where c1 = 4.30± 0.04 T−1 and c2 = 9.74± 0.02. Substitution of (S.14) into (S.13) leads to the form of
Fm
p given in the main text (4).

S.3 Movement of PMPs in fluid under magnetic field

We suppose that a cluster of n PMPs and bacteria, formed by agglutination, can be represented by a
buoyant sphere of volume V , radius Rn. We can use the theory of Stokes flow to calculate the forces
acting on the entire cluster when in the testing chamber and under the effect of a magnetic field:

ρpV z̈ = 6πµRnż +∆ρV g + nFm
p , (S.15)

Here, drag force, calculated using Stokes’ Law Fd = 6πµRnż on a sphere of radius Rn moving through
a fluid with a coefficient of dynamic viscosity µ at velocity ż Stokes (2009). The density of a PMP is
denoted ρp and the change in density between the surrounding fluid and the PMP by ∆ρ. Also, g is the
gravitational field strength on earth. See Fig. S.6(a).

The magnetic force experienced by a cluster of n PMPs is dependant on the volume of susceptible
material (PMPs) present in the cluster; Fm

c = nFm
p , with n being the number of PMPs in the cluster.

Here we are assuming that the magnetic flux density is the same at all points across the cluster i.e. the
cluster is very small in comparison to the flux density spatial decay.

Now, if we assume the total volume of the cluster is V = nVp where Vp is the volume of a single

PMP and total radius Rn = rpn
1
3 where rp is the radius of a single PMP, substituting these terms into

equation (S.15) leads to the following equation

ρpnVpz̈ = 6πµrpn
1
3 ż +∆ρnVpg + nFm

p ,

and by dividing by the number of PMPs in the cluster, n, the equation becomes

ρpVpz̈ =
6πµrp

n
2
3

ż +∆ρVpg + Fm
p . (S.16)
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Table 1: Properties of Particle Dynamics Model
Name Parameter Value

PMP Susceptibility χp (see eqn S.14)
Susceptibility constant 1 α1 4.30± 0.04T−1

Susceptibility constant 2 α2 9.74± 0.02T−1

Fluid density ρf 1089kg/m3

PMP density ρp 5240kg/m3

PMP radius rp 1.4µm
PMP Volume Vp 11.5× 10−18m3

PMP Volume Vp 11.5× 10−18m3

Fluid viscosity µ 0.8872× 10−3Pa s
Cluster size n 1− 100

Equation S.16 shows that only Stokes drag is dependent on the number of PMPs n. In particular as
the cluster size n increases, the drag force decreases, and thus the terminal velocity must increase. As
n increases the acceleration decreases but the velocity increases because of the force on the cluster due
to the magnetic field. Thus, we can understand how mean velocity of particles depends on cluster size,
which in turn depends on the concentration of target bacteria.

Finally, substitution of (4) into (S.16) gives a non-linear expression for the one-dimensional dynamics
of a cluster of n PMPs,

ρpVpz̈ =
6πµrp

n
2
3

ż +∆ρVpg +
3

2

Vpχp

µ0

B2
0a

6(h+ 2z)[
(z + 1

2h)
2 + a2

]4 , (S.17)

which has no analytical solution. Instead the system was solved numerically to give the trajectories,
zn(t), of clusters of 1 ≤ n ≤ 100 PMP’s.

S.3.1 Inductive coil response

As stated in the main text, the magnetic flux density, Bs(r, z), generated by the coil is calculated via the
linear summation of the field generated by each of the Nt coil turns carrying current I. Assuming each
turn is the same width and there is a uniform distribution of current, we can approximate each turn as a
series of M discrete filament turns (see Figure 4), with radius ant,m, carrying a current Im = I/M . The
magnetic flux density at any location (r, z) above the coil can therefore be defined as the summation of
the magnetic flux density contributions from each current carrying filament

Bs(r, z) ≈
µ0I

2πM

Nt,M∑
nt,m

λr r̂+ λz ẑ

[z2 + (r − ant,m)2]
√

z2 + (r + ant,m)2
, (S.18)

where

λr =
z

r

[(
a2nt,m + z2 + r2

)
E2(k)− E1(k)

]
,

λz =
[(
a2nt,m − z2 − r2

)
E2(k) + E1(k)

]
,

k2 = 4
rant,m

z2 + (ant,m + r)
2 .

Here E1(k) and E2(k) are elliptic functions of the first and second kinds respectively, and r̂ and ẑ are the
radial and vertical unit vectors vector Gal-Katziri and Hajimiri (2019). Values of the various geometric
constants are given in Table 2.
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