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Background 
 
Recent studies examining different aspects of smoking behaviour suggest that some 
of the associations may be due to pleiotropic effects (specifically horizontal 
pleiotropy, where a genetic variant may influence different phenotypes via 
independent pathways). For example, polygenic risk scores for smoking initiation 
have been found to be associated with risk taking and externalising behaviours, 
even in young children (Khouja et al., 2020; Liu et al., 2019; Schellhas et al., 2020), 
which suggests that the single nucleotide polymorphisms (SNPs) associated with 
smoking initiation may be capturing phenotypes other than smoking per se. 
 
Genome wide association studies (GWAS) are intended to identify SNPs associated 
with the phenotype being tested. These SNPs can then be used in analyses such as 
Mendelian Randomisation (MR) (Davey Smith and Ebrahim, 2003; Davey Smith 
and Hemani, 2014). This assumes that genome-wide significant SNPs are truly 
associated with the exposure of interest. However, as sample sizes for GWAS have 
increased (Mills and Rahal, 2019), it is likely that genome-wide significant SNPs 
are no longer only associated with the trait of interest, but also with other correlated 
phenotypes, resulting in horizontal pleiotropy.  
 
If SNPs associated with exposures such as smoking initiation are in fact 
horizontally pleiotropic, this poses a problem for MR analyses that are based on the 
assumption that SNPs from GWAS are specifically associated with the exposure 
and that the SNPs are not associated with confounders. Horizontal pleiotropy is one 
of the mechanisms by which confounding can be reintroduced and if this occurs 
then the instrument violates the assumptions of MR and is considered invalid 
(Davey Smith, 2010; Davey Smith et al., 2008), Therefore, it is important to 
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ascertain whether this is the case for SNPs we use as instruments in MR.  
 
Although several MR sensitivity methods already exist that can help us to infer the 
likelihood of bias from horizontal pleiotropy, we cannot directly test for pleiotropic 
effects (without knowledge of the functional biology). Therefore, it is important to 
interrogate the extent of pleiotropy in genetic instruments for smoking behaviours in 
other ways, such as those used in the present study. This will help in the 
interpretation of future MR studies using genetic instruments for smoking 
behaviours. This is the focus of the current study. 
 
Study Aims 
 
We aim to assess whether the SNPs identified in GWAS for smoking related traits are 
also associated with correlated confounders, independently of smoking.  
 
Specifically, we will investigate whether the positive and negative control variables 
we have pre-selected from a PheWAS of smoking initiation (using SNPs from a 
different sample) can be predicted by genetic risk scores of exposures for smoking 
related phenotypes of: 
 

• Smoking initiation 
• Smoking heaviness 
• Lifetime smoking index 

 
We hypothesise that the SNPs in the smoking related GWAS will be associated with 
confounders as well, which may provide evidence of horizontal pleiotropy. 
 
We will also conduct sensitivity analyses to assess whether the p-value threshold 
used to create the polygenic risk score impacts our results. 
 
If we find evidence of horizontal pleiotropy in this study, we would follow this up 
with two further studies. 
 
First, we would assess whether we see evidence of this in a separate cohort – the 
Million Veteran Program (MVP). Participation in MVP is likely to have different 
selection biases to participation in UK Biobank, and this may influence the SNPs 
identified for smoking initiation. Therefore, in turn, this may help us to better 
understand the reason behind any pleiotropic effects we observe in this study.  
 
Second, we would assess whether we see similar results – where comparable 
phenotypes are available – in children at an age where they would not yet have 
smoked (around age 7) in the Avon Longitudinal Study of Parents and Children 
(ALSPAC). If we also observe similar results here, this would provide further 
evidence of pleiotropy. 
 
Study Design 
 
We will assess whether the SNPs identified in GWAS for smoking related traits are 
also picking up other phenotypes (horizontal pleiotropy), using existing data from the 
UK Biobank and genetically informed analyses. We will use genetic and phenotypic 
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data from the UK Biobank, a large population-based prospective health research 
resource of around 500,000 participants, recruited between 2006 and 2010 from 
across the UK (Sudlow et al., 2015). 
 
Participants 
 
The UK Biobank includes participants aged between 38 and 73 years with data on a 
range of sociodemographic, lifestyle, physical and mental health measures. Data have 
been collected via a number of methods, including paper and web-based 
questionnaires, computer assisted interviews, clinic visits and data linkage. Baseline 
assessment took place at 22 assessment centres in the UK to enable recruitment from 
a range of locations, but further data collection is ongoing. Further information can be 
found on the UK Biobank website (www.ukbiobank.ac.uk). There are 488,377 
participants with genotype data available and details pre-imputation quality control, 
phasing and imputation, as well as in-house quality control filtering have been 
described elsewhere (Bycroft et al., 2018; Mitchell et al., 2019). We will include 
participants who have genetic and phenotypic data available for our exposures and 
outcomes of interest. Participation in UK Biobank is voluntary, and participants are 
free to withdraw from the cohort at any time without giving a reason. We will 
exclude any participants who have withdrawn their consent for their data to be used 
by using the latest withdrawal lists provided for the project data we have access to 
(UK Biobank project number: 16729). We will also restrict analyses to individuals of 
“White British” ancestry and remove related individuals. 
 
Measures 
 
Exposures: Smoking initiation, smoking heaviness and lifetime smoking index. 
 
Outcomes: We initially conducted a phenome wide association study (PheWAS) 
(Denny et al., 2010) for smoking initiation using a polygenic risk score of smoking 
initiation as the exposure, constructed in UK Biobank. To avoid sample overlap, we 
used GWAS summary statistics from the GWAS and Sequencing Consortium of 
Alcohol and Nicotine use (GSCAN) GWAS (Liu et al., 2019) for smoking initiation 
excluding the UK Biobank sample. We used genome-wide significant SNPs only in 
our polygenic risk score. The PheWAS was conducted using the PHEnome Scan 
ANalysis Tool (PHESANT) software package (Millard et al., 2018), which performs 
phenome scans on data from UK Biobank. We used this to test the association of our 
polygenic risk score with all of these outcomes (21,409 variables). Of these, 566 
variables were associated with the polygenic risk score (at a Bonferroni adjusted p-
value threshold of 2.34x10-06). From the top 100 of these (a threshold we decided a 
priori) we selected variables to be positive and negative controls in these analyses 
(our outcome variables). We did not include those related to the main smoking 
phenotypes and for similar variables we selected the one that we believed captured 
the most information. Positive controls were those known (or strongly believed) to be 
causally related to smoking initiation. Negative controls are those that we consider to 
be less plausibly causally related to smoking initiation. The effect estimate from the 
PheWAS are listed next to each variable to indicate the direction of the association. 
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For positive controls we selected (N=15): 
 

• Body mass index (BMI) (b=0.03) 
• Body fat percentage (b=0.02) 
• Wheeze or whistling in the chest in last year (b=0.07) 
• C-reactive protein (b=0.03) 
• Date first reported (other chronic obstructive pulmonary disease) * (b=0.15) 
• Mouth/teeth dental problems: Dentures (b=0.07) 
• Overall health rating (b=0.05, higher value corresponds to poorer health) 
• Gamma glutamyltransferase (b=0.02) 
• White blood cell (leukocyte) count (b=0.02) 
• Mean sphered cell volume (b=0.02) 
• Townsend deprivation index at recruitment (b=0.03) 
• Seen doctor (GP) for nerves, anxiety, tension or depression (b=0.05) 
• Number of treatments/medications taken (b=0.04) 
• Father’s age at death (b=-0.02) 
• Amount of alcohol drunk on a typical drinking day (b=0.07) 

 
* converted to a binary variable for first occurrence 
 
For negative controls we selected (N=12): 
 

• Lifetime number of sexual partners (b=0.08) 
• Age at first live birth * (b=-0.03) 
• Leisure/social activities: Religious group (b=-0.07) 
• Cereal intake (b=-0.04) 
• Risk taking (b=0.05) 
• Time spent watching television (b=0.04) 
• Liking for cabbage (b=0.06) 
• Weekly usage of mobile phone in last 3 months (b=0.04) 
• Ease of skin tanning ** (b=-0.03) 
• Mother’s age at time of questionnaire (b=-0.02) 
• Pain type(s) experienced in last month (back pain) (b=0.04) 
• Had an operation on the left-side of the body (b=0.04) 

 
* opposite to any adverse effect on fertility 
** higher value corresponds to less likely to tan 
 
Confounders: age, sex, first 10 principal components from principal components 
analysis of the genotype data in UK Biobank. 
 
Statistical Analysis Plan 
 
We will use a 10-fold cross validation approach in an attempt to reduce bias when the 
samples used for the GWAS and polygenic risk score construction are the same 
(Burgess et al., 2017). We will use data from the UK Biobank for the smoking related 
variables of: i) smoking initiation, ii) smoking heaviness, and iii) lifetime smoking 
index and run 10 GWAS for each smoking phenotype, where each GWAS includes a 
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different, random sample with 10% of the sample removed.  
 
The polygenic risk scores will then be constructed for this remaining 10% of the 
sample, to avoid sample overlap. This will result in each participant having a 
polygenic risk score after all 10 iterations.  
 
We will use the resulting polygenic risk scores and test the association of these with 
the positive and negative controls from the PheWAS. If we see associations with 
phenotypes such as risk-taking behaviour or if the three smoking phenotypes show 
very different associations then this provides evidence of horizontal pleiotropy and 
may suggest that confounding has been reintroduced. 
 
Sensitivity analyses 
 
We will investigate whether any pleiotropic effects we observe in the main analyses 
may be due to the inclusion of more SNPs, from larger GWAS, in our instruments for 
smoking related traits. This may allow us to better understand the profile and extent 
of pleiotropy for these instruments which will be useful in future MR studies. To do 
this we will run analyses where we found evidence of an association in our main 
analyses using different, more stringent p-value thresholds for genome-wide 
significant SNPs to create the polygenic risk score for the exposure. Specifically, we 
will run analyses with polygenic risk scores constructed at different p-value 
thresholds below 5x10-08 and compare results with those from all genome-wide 
significant SNPs in the main analyses. 
 
Ethics 
 
UK Biobank received ethics approval from the Research Ethics Committee (REC 
reference for UK Biobank is 11/NW/0382). 
 
Data Access and Sharing 
 
Phenotypic data from UK Biobank is stored in a project specific folder with access 
granted only to those on the project on a secure server. Linker ID’s with UK Biobank 
genetic data can be created for each project and linked to genetic data. Any 
withdrawals of consent are updated by the project lead on a specific project for UK 
Biobank. All data access will be via a remote server. We will adhere to the relevant 
data protection legislation, including the EU General Data Protection Regulation 
(https://www.eugdpr.org/) and UK Data Protection Act 2018. All data provided by 
UK Biobank is anonymised by a unique identifier. 
 
To access UK Biobank data, researchers must complete an application for a proposed 
project. Once approved a material transfer agreement will need to be executed before 
data is released. Further information on data access can be found here 
(https://www.ukbiobank.ac.uk/using-the-resource/).  
 
The code used for data analysis will be made available upon publication on the 
data.bris research data repository (https://data.bris.ac.uk/data/). 
 
The results from this study will be published in an appropriate scientific journal (and 
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made available open access) and/or presented at an appropriate scientific meeting. 
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