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1. Toolbox summary 
1.1 Overview 
int_defects is a toolbox for MATLAB designed to help engineers investigate the interactions 
between co-planar crack-like flaws in structures. It uses the Abaqus Finite Element Analysis (FEA) 
package to create and solve models of single flaws and pairs of flaws in plates and pipes of finite 
thickness. The results can be used to predict the initiation of fracture or plastic collapse. 
int_defects allows large parametric series of models of interacting cracks to be generated and 
solved automatically. It also contains functions for automatic post-processing, calculation of 
interaction factors and plotting of the results. int_defects is free and open-source software 
distributed under the terms of the MIT license. 

1.2 Intended applications 
The int_defects toolbox was designed to aid the development of structural integrity assessment 
procedures such as R6 [1] and BS 7910 [2]. These procedures contain simple criteria for determining 
when crack-like structural flaws are close enough to have an effect on each other. When they are 
judged to interact, the procedure takes this interaction into account eg. by mandating the re-
characterisation of a pair of flaws as a single, larger enclosing flaw. Ideally, these interaction criteria 
and recharacterisation rules should be valid for a wide range of flaw geometries, materials and loading 
conditions. To test them, a large number of FE models need to be formulated, solved and post-
processed. int_defects provides an easy and quick way to perform the linear-elastic, elastic-
plastic and elastic-perfectly-plastic FE analyses required for the development of reliable flaw 
interaction criteria. 

int_defects can also be used to quickly formulate and solve FE models of specific co-planar cracks 
on a case-by-case basis. This is useful when analysing a specific flaw geometry and loading case, eg. as 
part of fitness-for-service assessment of a specific structure. In such cases, int_defects can also 
be used to perform a series of models to analyse the sensitivity of the crack-driving force to the flaw 
proximity or other factors. 

 

  

There are also basic scientific/technical applications of int_defects. For example, it can be used to 
determine general relationships between fracture parameters (eg. SIF and T-stress) and flaw 
shape/size/proximity. 
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2. Capabilities 
int_defects is used for analysing crack-like semi-elliptical surface flaws and crack-like elliptical 
embedded flaws. The flaws must be in the through-wall plane of a flat plate, or in the axial-radial plane 
of a pipe. For pipes, the cracks may be on the internal surface, external surface, or embedded (i.e. 
non-surface-breaking). Single flaws or interacting pairs of flaws can be analysed. The flaws may have 
arbitrary dimensions and relative positions. The plate/pipe may also have arbitrary dimensions. 
int_defects can perform the following types of analysis: 

1. Linear-elastic analysis to determine the crack tip Stress Intensity Factor (SIF), as a function of 
position on the crack tip line(s). 

2. Linear-elastic analysis to determine the level of (elastic) interaction for two flaws which are 
located close to each other. 

3. Elastic-perfectly-plastic analysis to determine the Local Limit Load (LLL) and/or Net Section 
Limit Load (NSLL) for a flawed structure. 

4. Elastic-plastic analysis to determine the J-integral as a function of load and of position on the 
crack tip line. 

When analysing a plate geometry, the loading state can be defined using remotely-applied loads, 
moments and combinations of the two. For a pipe geometry, an internal pressure load can be used. 
For both plate and pipe geometries, a load in the plane of the crack can also be defined to produce 
biaxial crack loading. In pipes, this is used frequently to simulate the axial stress of a closed-ended 
pipe. For linear elastic models it is also possible to define a crack face pressure load to simulate any 
arbitrary through-wall distribution of stress: by Bueckner’s superposition principle [3–5], in a linear 
material a crack face pressure distribution will produce an identical SIF at the crack tip line to an 
equivalent through-thickness stress distribution. 

As well as models of defect pairs, int_defects can automatically generate finite element models 
of single semi-elliptical surface defects and elliptical embedded defects. Therefore, in addition to its 
primary use for investigating defect interaction, int_defects can also be used for parametric 
studies of single cracks. 

 

The set of single flaw/flaw pair geometries that can be investigated using int_defects is shown in 
Figure 1. In all cases, the model is symmetric about the plane containing the crack features. The plate 
(or pipe) wall thickness and width can be defined by the user; to simulate an infinitely-wide plate the 
user can define arbitrarily wide plate. 

int_defects is currently limited to analysing co-planar semi-elliptical surface flaws and elliptical 
embedded flaws in a flat plate or a pipe. For a pipe geometry, the cracks must be in the axial-radial plane. 
 
In general, if two flaws are co-planar they will have a more adverse effect on each other than if one flaw was 
out-of-plane and/or tilted relative to the other, although this is not a universal rule in the case of ductile 
fracture. Therefore, this toolbox can be used to give a conservative estimate of the significance of interaction 
in most cases. The use of enclosing ellipses and semi-ellipses to characterise arbitrary flaws is recommended 
in the R6 procedure. 
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a. 

 

b. 

 
c. 

 

d. 

 
 
 

e. 

 
Figure 1: Flaw geometries which can be handled by int_defects. a.) Single surface semi-elliptical crack (showing stress 
in the vertical direction as a proportion of yield), b.) single embedded elliptical crack, c.) two co-planar surface cracks (same 
face), d.) two co-planar surface cracks (opposite faces), e.) surface semi-elliptical crack and embedded elliptical crack. In all 
cases, each crack can be of arbitrary size and aspect ratio. 
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3. Installation 
3.1 Compatible operating systems and CPU architecture 
The int_defects toolbox was developed on Windows 7 and CentOS Linux 6.8. It should work on 
any other recent Windows or Unix-based operating system which has the required software installed. 
Abaqus (required by int_defects) can run on Windows x86-32 and x86-64 architectures, and Linux 
x86-64. 

3.2 Required software 
1.  An installation of MATLAB (The MathWorks, Inc.). int_defects was developed using 

MATLAB R2016a and has been tested with older MATLAB versions as far back as R2013a. The 
toolbox’s behaviour on older versions of MATLAB than R2013a is untested. 

2. An installation of the Abaqus FEA suite (Dassault Systèmes SE). int_defects uses the finite 
element analysis pre-processor Abaqus/CAE and the FE solver Abaqus/Standard.  The toolbox 
has been tested on Abaqus versions between Abaqus v6.12 and Abaqus 2018. 

3. int_defects makes use of the MATLAB Parallel Computing Toolbox (PCT) if it is available, 
but can function without it. 

 

3.3 Installation procedure 
int_defects is installed from a MATLAB toolbox file. Alternatively, the functions that make up 
the toolbox can be added to the MATLAB path directly by the user, which be more convenient if the 
user needs to edit the code. 

3.3.1 Toolbox installation (recommended) 
1. Unpack the installation file int_defects vX.X.X.zip. (where vX.X.X is the toolbox version). 
2. Open MATLAB and navigate to the directory containing installation file contents. 
3. Double-click on int_defects.mltbx and then click “Install”. 

To uninstall the toolbox, in the MATLAB “Home” tab go to the “Add-Ons” drop-down. Click “Manage 
Add-Ons” then “Uninstall” next to int_defects in the toolbox listing. 

3.3.2 Alternative installation method: add functions to the MATLAB path 
1. Unpack the installation file int_defects.zip. 
2. Open MATLAB and navigate the directory containing installation file contents. 
3. Right-click on the directory and select “Add to path>Selected folders and subfolders”. 

When using this alternative method you may have to either re-add the path each time MATLAB is 
started, or add the path name explicitly to the MATLAB’s startup.m script. The former method will not 
work if you need to call int_defects in MATLAB from an external script (see Section A6). 

  

The PCT is used to parallelise the execution of Abaqus jobs, which reduces the time taken to run large series 
of relatively simple FE models. Further information is given in Section 4.3. 
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4. Usage guide 
This section gives details on how int_defects can be used. More detailed worked usage examples 
can be found in Appendix A. 

 

4.1 Defining a series of models 
In int_defects, series of 3D cracked-body models are defined using a MATLAB data structure 
which always has the name “paramRangeStruct”. int_defects interprets paramRangeStruct, and 
uses it to generate individual models which are then run. In a typical workflow, paramRangeStruct is 
set up by the user (using MATLAB) and then saved in a .mat file called eg. 
*my_paramRangeStruct*.mat. This filename is then passed as input to the function 
int_defects_write_inp_parametric, which then generates the set of model input files (see 
Section 4.2). 

The parameters that make up paramRangeStruct define the geometry of crack pairs being 
investigated, their material properties, loading conditions, mesh sizes and model output requests. 
Section 7 lists the options that can be given in paramRangeStruct. 

Some parameters in paramRangeStruct must be defined as a scalar value or a string, in which case all 
models in the model series will use the same parameter value. Other parameters may be defined using 
a vector or a cell array of strings, in which case models will all possible combinations of the provided 
values will be created. Details of which parameters may take multiple values and which must be the 
same in all models are given in Section 7. 

4.2 Generating input files for the models 
The function int_defects_write_inp_parametric creates a series of model input files by 
calling Abaqus/CAE.  When run, the function it creates a new directory which is named 
“abaqus_param_files” and then populates it with sub-directories (one for each parameter 
combination) into which the individual model input files are written. The function will also write the 
logfile “log1.txt” into the same directory. This logfile gives information about the process of model 
generation, eg. whether there were any combinations of parameters for which model input files could 
not be created. 

 

Detailed usage notes can be found in the code comments of each of the functions included in int_defects. 
Use the MATLAB command: 

doc *my_function_name* 
or: 
 open *my_function_name* 

to view them. 

int_defects uses the Abaqus/CAE python scripting interface. To generate a model, a python script listing 
the actions required to create the model input file is written by MATLAB and then executed by Abaqus/CAE. 
 
Warning: Running the function int_defects_write_inp_parametric will terminate any open 
instances of Abaqus/CAE that are owned by the current user. Users should save any other models or results 
files open in Abaqus/CAE before proceeding.  
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To create model input files int_defects_write_inp_parametric uses a ‘master’ python 
script that outlines the set of actions which must be performed by Abaqus/CAE to create a model of 
the type used by int_defects. This master python script is modified individually for each model 
and then executed using the Abaqus/CAE scripting interface. 

int_defects_write_inp_parametric also checks on the outcome of each attempt to 
generate a model input file. If Abaqus/CAE is not able to create or mesh the model as-specified, 
int_defects_write_inp_parametric can relax the meshing constraints and attempt to re-
mesh the model.  

4.3 Solving the models 
The function int_defects_run_parametric_parallel is used to execute a series of models 
using Abaqus/Standard. The series of model input files required for this will (typically) have been 
created beforehand using int_defects_write_inp_parametric. 
int_defects_run_parametric_parallel can execute several models in parallel if this is 
requested by the user, and if the system and number of available Abaqus licenses will permit. Running 
several models in parallel can help to minimise the total runtime necessary to execute for a large series 
of models. In addition, the number of CPUs assigned to each parallel Abaqus job can be defined. 

 

The function int_defects_run_parametric_parallel automatically controls model 
execution and has several features for ensuring that the model series runs reliably. It can catch and 
retry failed jobs, perform contour-independence checks on contour integral output, delete 
unnecessary Abaqus output files, and save information on the outcome of each model execution 
attempt in a MATLAB-accessible file (workspace_dump.mat). 

4.4 Post-processing (crack tip contour integrals) 
Contour integral output can be requested using the MATLAB structure which defines the model set 
(paramRangeStruct), using the options described in Section 7.5. When contour integral output is 
requested, the user must specify the cracks(s) required, the contour integral type (KI, J-integral or T-
stress) and the number of contours. Contour integral results are given for each node on the crack tip 
line. The conventions used for automatic numbering of the crack tip nodes, and hence the order in 
which contour integral output for each node is given, are described in Section 5.3.4. 

In int_defects, the function int_defects_run_parametric_parallel is used to solve 
all models in a set (see Section 4.3). Once this has been run and the models are complete, a directory 
labelled abaqus_param_files will have been created, containing model output (see Section 5.4). 
This should be renamed by the user to: abaqus_param_files_*my_descriptive_name*. 
Then, the script int_defects_read_user can be run to extract contour integral results from all 
models in the set. int_defects_read_user is a user-friendly “wrapper” script which calls the 
function int_defects_read_parametric. The results are saved automatically in the 

Although Abaqus/Standard itself can use parallelisation when solving individual models, it does not 
parallelise the model pre-processing and this can be a significant fraction of the total runtime. Therefore, 
using MATLAB parallelisation to run several Abaqus jobs at the same time can give a significant performance 
improvement. This improvement is hardware-dependent. The number of parallel Abaqus jobs and the number 
of CPUs per job must be defined as input to int_defects_run_parametric_parallel. The product 
of these two should not exceed the number of CPUs available on the system. 
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outputArray structure in the file workspace_dump.mat: one array entry for each model. They can 
then be plotted using the functions plot_KI_over_crack or plot_J_over_crack. 

The Abaqus input files used by int_defects request contour integral output for all increments in 
each model, and contour integral results are extracted by int_defects_read_user for every 
available increment. Therefore, contour integral results should be available for the model’s complete 
time history. 

For sets of elastic-plastic models where the J-integral has been requested, it is possible to extract the 
contour integral result from the model increments where plastic breakthrough to the back face of the 
plate/pipe occurs. The special-purpose function int_defects_extract_breakthrough_J  is 
provided for this purpose; an example of its use is given in Section A5. 

For sets of linear elastic models performed to determine the level of elastic interaction between two 
flaws, the function int_defects_calc_interaction_factor may be used calculate 
interaction factors. This requires results from two or three sets of models: one set of models of 
interacting cracks and one or two sets of models of single cracks. Interaction factors can be plotted 
using the function plot_IF_over_crack. 

4.5 Post-processing (limit load analysis) 
For elastic → perfectly-plastic models performed as part of a limit load analysis, local limit loads and 
global limit loads can be extracted automatically from the results of a set of models by navigating into 
the directory containing model results (abaqus_param_files) and running the function 
int_defects_plastic_breakthrough_parametric. For limit load analysis, the following 
definitions are used: 

• Local limit load: The load at which any path of yielded/yielding material forms between the 
crack and a specified plane (which is normally the opposite surface of the plate/pipe). Any 
plastic path is allowed, including paths which do not lie on the crack plane. 

• Global limit load: The load at which global plastic instability occurs. This is determined from 
the last model increment performed; it is assumed that the solver will stop once the solution 
becomes unbounded due to plastic instability. 
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5. Detailed description 
5.1 Scope and requirements 

• LEFM/EPFM scope: int_defects was originally designed for linear elastic analysis. As a 
result, much of the output post-processing is designed for manipulating SIF results. Automatic 
sorting and comparison of SIF data is available, but currently there is no facility available to do 
automatic comparison of J-integrals. 

• Master .py files: When generating the input deck for each finite element model, 
int_defects uses a ‘master’ .py file. This serves as a template for a Python script which is 
written (by int_defects) is then executed (by Abaqus/CAE) to generate the model input. 
Currently, two master .py files are used, one for single cracks and one for pairs of cracks. The 
current versions are: 

o Single cracks: IntCrackJob1_6.0.4_single_master.py 
o Pairs of cracks (any type): IntCrackJob1_6.0.4_master.py 

5.2 FE modelling 
• Mesh description: The finite element meshes that are automatically generated using 

int_defects_write_inp_parametric consist of four main sections, shown in 
Figure 2. The innermost mesh region (the ‘inner’ crack tip region) is a ring of 6-noded linear 
wedge elements which directly surrounds each crack tip. This is generated by setting the 
element type of a semi-annular region around the crack tip to ‘brick’ in Abaqus CAE, and 
defining ‘collapsed, single node’ conditions at the crack tip line in the crack object. The second 
region is an ‘outer’ semi-annular region which contains 8-noded linear brick elements. The 
size of this outer region can be set manually in paramRangeStruct using rpA2 and rpB2 after 
varShellSizeFlag has been set as false. The number of elements in the radial direction can be 
set using noTipElemsRadial2A and noTipElemsRadial2B. This will limit the number of contours 
that can be requested in contour integral output. The next region is an unevenly-shaped 
region of quadratic tetrahedral elements which is used to match the complex-shaped crack 
tip zone regions to the mesh of the rest of the plate. The outermost region is a region of 8-
noded linear brick elements which represents the remainder of the plate. Tie constraints are 
automatically generated to link the region of tetrahedral elements to the regions adjacent to 
it. 

• Materials: int_defects can create and run FE models of cracks using any of the following 
material models: 

o Linear elasticity: Models of cracks in plates of linear elastic material (Abaqus keyword: 
*ELASTIC) are used for determining SIFs and T-stresses. Only isotropic linear elasticity 
is supported by int_defects. The Young’s modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈 must 
be given in paramRangeStruct. 

o Linear elasticity + incremental plasticity: A material true stress-strain curve for 
incremental plasticity can be defined using 
paramRangeStruct.materialParams.PlasticTable. The material model uses a von Mises 
yield locus and an isotropic hardening law (Abaqus keywords: *ELASTIC and 
*PLASTIC). This method is used for models of elastic-plastic materials, and for elastic-
perfectly-plastic models used to determine limit loads. 

o Deformation plasticity: A hyperelastic deformation plasticity model is also available 
(Abaqus keyword: *DEFORMATION PLASTICITY). This is an approximation of real 
behaviour for materials which follow a Ramber-Osgood stress-strain relationship and 
are subjected to monotonic loading. 
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• Contour integral output: It is important to ensure that the number of contours requested is 
less than the number of nodes in the radial direction in the first two mesh zones. Also, it should 
be verified that the. int_defects_contour_independence_check will check SIF 
results for contour-dependence. However, the criterion used for determining contour 
independence was developed in an ad hoc manner, and cannot be guaranteed to work for all 
cases. Although int_defects_contour_independence_check does seem to run for 
models which give J output, the results will almost certainly be unreliable: the script was not 
designed for this type of output and I have not tested it. 

• Crack face contact: The models constructed by int_defects do not consider the effect of 
contact between the opposing surfaces of a crack. This may affect the accuracy of contour 
integral results when: a.) the loading applied is highly non-uniform across the wall thickness, 
and/or b.) an inelastic material is used and the loading is strongly non-monotonic with respect 
to time. 
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a. 

 
b. 

 
c. 

 
Figure 2: Meshing arrangement used for investigating semi-elliptical and elliptical defects in a plate. a.) Close-up of the 
intersection of the crack tip line with the plate’s surface, b.) Tetrahedral and outer mesh regions, c.) whole model. Only half 
of the complete plate is modelled; symmetric boundary conditions have been defined on the crack plane. 

5.3 Conventions 
5.3.1 Units 
Like Abaqus, int_defects requires that a self-consistent system of units is used throughout, but 
does not specify what system of units that must be. For example, it would be possible to provide input 
in SI base units (m, s, N, Pa, J) in which case SIF output in units of Pa √m would be expected. During 
development of int_defects, a Newtons-mm convention (mm, s, N, MPa, N-mm) was normally 
used as this is more convenient for most engineering applications. In this convention, SIF output in 
MPa √mm would be expected. 

 

It is important to ensure that a consistent set of units is used when specifying all fields in paramRangeStruct. 
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5.3.2 Coordinate system 
All models use a cartesian coordinate system. For models of plates: 

• The coordinate system is defined such that the x-y plane is the model’s symmetry plane, and 
the model exists in +ive z. 

• The long edge of the model cross-section in the symmetry plane runs along x and through 
the origin (making y the through-thickness coordinate). 

For models of pipes: 

• The coordinate system is defined such that the x-y plane is the model’s symmetry plane, and 
the model exists in +ive z. 

• The origin of the coordinate system lies on the axis of the pipe. 

5.3.3 Crack geometry and positioning 
• For a pair of two surface cracks, Crack A is always the deepest of the two and Crack B is 

shallower (regardless of the crack widths). 
• When there is one surface crack and one embedded crack, Crack A is always at the surface 

and Crack B is embedded. 
• When cracks are offset from each other in the x direction, Crack A is in the +ive x side of the 

origin and Crack B is on the -ive x side of the origin. If they are not offset, then they will both 
be aligned with their centres on the x=0 line. 
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Figure 3: Definition of basic geometric parameters for pairs of cracks. 

5.3.4 Ordering of contour integral output along the crack tip line 
The numbering of contour integral output locations along the crack tip line is performed automatically 
by Abaqus/CAE after meshing. The output location order varies depending on the geometry of the 
crack or crack pair: 

• For single semi-elliptical surface cracks: output locations proceed anticlockwise starting from 
the point on crack tip line furthest in negative x (which is a surface intersection). 

• For single embedded elliptical cracks: output locations proceed anticlockwise starting from 
the point on the crack tip line furthest in negative x. 

• For pairs of semi-elliptical surface cracks emanating from the same side of the wall: in both 
Crack A and Crack B, output locations proceed anticlockwise starting from the point on the 
crack tip line furthest in negative x (which is a surface intersection). 

• For pairs of semi-elliptical surface cracks emanating from opposite sides of the wall: In Crack 
A, output locations proceed anticlockwise starting from the point on the crack tip line furthest 
in negative x (i.e. near-side surface intersection). In Crack B, output locations proceed 
anticlockwise starting from the point on the crack tip line furthest in positive x (surface 
intersection).  
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• For a semi-elliptical surface crack and an elliptical embedded crack: In Crack A, output 
locations proceed anticlockwise starting from the point on the crack tip line furthest in 
negative x (i.e. near-side surface intersection). In Crack B, output locations proceed clockwise 
from the point on the crack tip line furthest in negative x. 

 

5.4 Directory structure used for creating and executing jobs 
To create model input files, you first need a master python scripting interface file and a MATLAB .mat 
file containing the structure paramRangeStruct. Master python files are provided with 
int_defects, while the .mat file must be created by the user. So initially, the working directory 
should look like this: 

IntCrackJob1_6.0.4_single_master.py 
my_paramRangeStruct.mat 
 

When creating model input files, int_defects_write_inp_parametric creates a directory 
structure like this: 

abaqus_param_files 
 000001 
 abaqus.rpy 
 IntCrackJob1.inp 
 IntCrackJob1_generated.py 

 000002 
 abaqus.rpy 
 IntCrackJob1.inp 
 IntCrackJob1_generated.py 

 … etc. (up to the total number of parameter combinations) 
 log1.txt 
 workspace_dump.mat 

IntCrackJob1_6.0.4_single_master.py 
my_paramRangeStruct.mat 

 
 
When each model is subsequently run by int_defects_run_parametric_parallel, the 
results data file, status file, etc. (but not the output database,  .odb) is saved in each subdirectory: 

abaqus_param_files 
 000001 
 abaqus.rpy 
 IntCrackJob1.com 
 IntCrackJob1.dat 
 IntCrackJob1.inp 
 IntCrackJob1.msg 
 IntCrackJob1.sim 
 IntCrackJob1.sta 

The information on node ordering given above is the expected behaviour at the time of writing. The node 
order is generated by Abaqus and so this advice by be invalidated by future changes to the Abaqus FEA suite. 
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 IntCrackJob1_generated.py 
 000002 
 abaqus.rpy 
 IntCrackJob1.com 
 IntCrackJob1.dat 
 IntCrackJob1.inp 
 IntCrackJob1.msg 
 IntCrackJob1.sim 
 IntCrackJob1.sta 
 IntCrackJob1_generated.py 

 … etc. (up to the total number of parameter combinations) 
 log1.txt 
 workspace_dump.mat 

IntCrackJob1_6.0.4_single_master.py 
my_paramRangeStruct.mat 
 
Note: If int_defects_run_parametric_parallel is run with the input option 
abaqusCleanupFlag=false, then all Abaqus/Standard output files will be retained in each subdirectory, 
including the (potential large) .odb file. 
 
When the elastic interaction factor is calculated by 
int_defects_calc_interaction_factor using a set of linear-elastic results for models of 
crack pairs, and a set (or sets) of corresponding models of single cracks, an additional logfile (log2.txt) 
is written into the abaqus_param_files directory for the main model set. log2.txt contains details of 
which cases it was possible to calculate elastic interaction factors for, given the available results. 

5.4 paramLogStruct 
The main functions in int_defects, such as int_defects_write_inp_parametric and 
int_defects_run_parametric_parallel, log important information about each model in 
a model set. The master log of model parameters and execution conditions is the structure 
“paramLogStruct” in the MATLAB file abaqus_param_files\workspace_dump.mat (see Section 5.4). 
This keeps a record of: 

• Model file names: 
o paramLogStruct(*myModelNo*).filenames 

• Model parameters (geometry in absolute distance): 
o paramLogStruct(*myModelNo*).modelParams 

• Model parameters (geometry in normalised parameters, as in paramRangeStruct): 
o paramLogStruct(*myModelNo*).naturalParams 

• Status of model input file generation: 
o paramLogStruct(*myModelNo*).inpStatus 
o paramLogStruct(*myModelNo*).modelParamsValidityComment 
o paramLogStruct(*myModelNo*).inpWriteExitMessage 
o paramLogStruct(*myModelNo*).inpWriteWarnings 

• Status of model execution: 
o paramLogStruct(*myModelNo*).jobExitStatus 
o paramLogStruct(*myModelNo*).contDepWarningFlagLevel1 
o paramLogStruct(*myModelNo*).contDepWarningFlagLevel2 
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6. List of functions 
In the following list, key high-level functions are given in bold italic type. All functions are fully 
commented and users are encouraged to check code comments for extra usage information. 

6.1. Interpreting paramRangeStruct into model parameters 
• int_defects_calc_model_edge_params.m 

o Determines model parameters from the parameter set structure paramRangeStruct. 
Specifically, int_defects_calc_model_edge_params determines model spatial 
geometry such as the locations of mesh transitions, node seeds etc. 

• int_defects_calc_model_params.m 
o Determines model parameters from the parameter set structure paramRangeStruct. 

This function calls int_defects_calc_model_edge_params. 

6.2. Elliptic Geometry 
• calc_ellipse_angle.m 

o Approximates the ellipse parametric angle corresponding to a particular length of 
arc around an ellipse’s circumference. 

• calc_ellipses_approach.m 
o Approximates the distance of closest approach between two ellipses with given 

centres and radii. 
• calc_ellipses_approach_multiple_d.m 

o Runs calc_ellipses_approach for pairs of differently-spaced ellipses with different 
centre locations. 

• int_defects_d_from_sOverb.m 
o Approximates the distance between edges in the x-direction for a pair of opposed 

semi-ellipses which are offset in y. The ellipses have given radii and a given distance 
of closest approach. 

• test_ellipses_interior.m 
o Determines whether or not a given point lies within a specified ellipse. 

6.3. Processing and plotting results 
• int_defects_contour_independence_check.m 

o Checks the contour-dependence of Mode I SIFs, when they are calculated as a 
contour integral from FEA results. 

• int_defects_calc_interaction_factor.m 
o Calculates elastic fracture interaction factors for interacting flaws from SIF results. It 

requires SIF results from two sets of models – one set of models of interacting flaws, 
and one set of models of single flaws in isolation. 

• int_defects_plot_J_vs_stress.m 
o Determines the J-integral for a given position on the crack tip line for a cracked-body 

FE model, and plots it against the applied remote stress. 
• int_defects_read_J_at_inc.m 

o Extracts J-integral values for a specific location and point in time from a set of crack 
driving force models. 

• int_defects_read_J_at_inc_parametric.m 
o Loops through a set of elastic-plastic models, running 

int_defects_read_J_at_inc for each. 
• int_defects_read_parametric.m 
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o Reads contour integral data from a set of FE models of single or paired interacting 
cracks. 

• int_defects_read_user.m 
o User-friendly “wrapper” script for int_defects_read_parametric which 

automates file read/write operations when working in a folder containing multiple 
results directories. 

• int_defects_upgrade_odbs.m 
o Loops through a set of numerically-named directories which each contain the results 

from a single Abaqus model, and upgrades any .odb files therein to be compatible 
with the latest installed version of Abaqus/CAE. 

• plot_IF_over_crack.m 
o Generates a plot of elastic interaction factor vs. ellipse parametric angle from two 

sets of FEA results, one for single cracks and one for pairs of cracks. 
• plot_KI_over_crack.m 

o Generates a plot of SIF vs ellipse parametric angle from a set of FEA results of 
elliptical or semi-elliptical crack-like defects in a structure. 

• plot_J_over_crack.m 
o Generates a plot of J-integral vs ellipse parametric angle from a set of FEA results of 

elliptical or semi-elliptical crack-like defects in a structure. 
• int_defects_extract_breakthrough_J.m 

o Extracts the J-integral at various points on the crack tip line from models of 
embedded elliptical and surface semi-elliptical cracks in a plate of elastic-plastic 
material. The J-integral results are taken at the increment at which plastic 
breakthrough from the buried crack to the surface occurs. 

• int_defects_plastic_breakthrough.m 
o Determines the model increment at which "plastic breakthrough" occurs in a FE 

model. Plastic breakthrough is defined as the appearance of an unbroken path of 
elements, each with a plastic strain value greater than a specified tolerance, which 
connects a specified location (or any one of a set of locations) with a specified plane. 
This function requires that equivalent plastic strain data is available in the Abaqus 
data file. To ensure this, the following custom output request can be added in 
paramRangeStruct when setting up the models: 
paramRangeStruct.outputRequests.custom = ‘** OUTPUT REQUESTS 
 *El Print, Elset = PlatePartitioned-1.Set-1, Position = Centroidal, Frequency=1 
 PEEQ’. 

• int_defects_plastic_breakthrough_parametric.m 
o Loops through a set of models running 

int_defects_plastic_breakthrough for each. 

6.4. Creating and running jobs 
• int_defects_flip_normal_in_inp.m 

o In an Abaqus FE model input file, inverts the direction of the normal vector used for 
contour integral evaluation. 

• int_defects_run_parametric_parallel.m 
o Runs a series of FE models representing structures containing crack-like defects. This 

function is generally run after int_defects_write_inp_parametric has 
produced a set of model input files. 
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• int_defects_write_inp.m 
o Uses Abaqus/CAE to generate a FE input file using a ‘master’ python script and a set 

of parameters defining a model of a cracked structure. 
• int_defects_write_inp_parametric.m 

o Takes a set of parameters defining parametric models and runs 
int_defects_write_input to define a model input file for each. 

• int_defects_write_logfile_1.m 
o Writes a logfile containing information on the generation of an Abaqus input file. It 

is called at the end of int_defects_write_inp_parametric, and writes the 
logfile into the working folder. 

• int_defects_write_logfile_2.m 
o Writes a logfile containing information about the status of the models in a 

parametric series, and whether the results from these models were successfully 
used to calculate the interaction factors for pairs of cracks. 

• int_defects_plate2cyl_auto.m 
o Takes an Abaqus input file for a model of a plate and applies a geometric 

transformation to the node locations, creating a model of a half-pipe. 
• int_defects_py_line_basic.m 

o Constructs a single line for a python file which is used for generating a FE model 
using Abaqus/CAE. nB. int_defects_py_line_basic is used for making 
straightforward edits to the line of the master python file. 
int_defects_py_line_edges is used for making more complex edits. 

• int_defects_py_line_builder.m 
o Constructs a string containing coordinates, deformation plasticity parameters or 

plastic flow data in a certain format used by the Abaqus scripting interface. This 
function is called by int_defects_py_line_edges. 

• int_defects_py_line_edges.m 
o Constructs a single line for a python file which is used for generating a FE model 

using Abaqus/CAE. nB. int_defects_py_line_basic is used for making 
straightforward edits to the line of the master python file. 
int_defects_py_line_edges is used for making more complex edits. 

• int_defects_write_py.m 
o Writes a python script for generating a FE model using Abaqus/CAE. It uses an 

existing 'master' (i.e. template) script, and parameters defined in modelParamStruct. 
It writes the new file into the current directory. Certain strings eg. #aA1# in the 
master file indicate where the parameters should be written to. 

• read_py.m 
o Reads a python file line-by-line. 

  



18 
 

7. paramRangeStruct options 
paramRangeStruct defines the set of models to be run. It includes geometric parameters (e.g. crack 
sizes and aspect ratios), modelling parameters (e.g. section sizes, node densities), material parameters 
(e.g. elastic constants), loading parameters and output requests. Parameters of these five different 
types are given in sub-structures of paramRangeStruct. The sub-structures are named: 

• geometryParams 
• loadingParams 
• materialParams 
• modelParams 
• outputRequests 

So for example, the parameter which defines the Poisson’s ratio of the model material is 
“paramRangeStruct.materialParams.nu”. 

Parameters named in bold italic type in the sections below may be given as a vector (for numeric) or 
a cell array of strings (for strings). This will cause int_defects to produce a parametric set of 
models, with each model taking one of the values given in the vector/cell array. When multiple 
parameters are given as vectors or cell arrays, int_defects_write_inp_parametric will 
create models for all possible combinations of parameter values. 

7.1 geometryParams (paramRangeStruct.geometryParams.*these sub-fields*) 
• geometryType – String defining the type of geometry that will be analysed. Must be either 

‘plate’ or ‘pipe’. The ‘pipe’ option is used for models of studying flaws in the axial-radial plane 
of a pipe wall. 

• pipeCrackA – String defining the reference surface for pipe models. If Crack A is on the internal 
surface of the pipe (or is an embedded crack with the depth measured from the ID) then 
pipeCrackA= ‘internal’. If it is on the outside then pipeCrackA=‘external’. In models with two 
cracks, Crack B’s position is then given relative to Crack A (see Figure 3). This parameter is not 
used when geometryType=’plate’. 

• singleCrackFlag – Logical defining whether the model is of a single crack (false for a pair of 
cracks). 

• oppositeFlag - Logical defining whether Crack B emanates from the opposite surface as Crack  
A, false for the same side. nB. If Crack B is a sub-surface elliptical crack, it is considered as 
opposite. 

• subsurfaceAFlag & subsurfaceBFlag – Logicals defining whether Crack A and B are subsurface 
cracks. False for surface semi-elliptical cracks. 

• aA1Overb – Depth of Crack A expressed as a fraction of the wall thickness b. 
• aA1OveraA2 – Aspect ratio of Crack A (depth over half-width). 
• aB1OveraB2 - Aspect ratio of Crack B (depth over half-width). If this is given as NaN in a two-

crack model, the same aspect ratio will be used for Crack B as for Crack A. 
• Parameter defining the depth of Crack B. Note for an elliptical embedded crack, the total 

depth in the through-thickness dimension is 2*aB1. In models which contain two cracks, 
exactly one of the following variables must be defined: 

o aB1OveraA1 - Depth of Crack B expressed as a fraction of the depth of Crack A. 
o aB1Overb - Depth of Crack B expressed as a fraction of wall thickness b.  

• Parameter defining the separation distance in the along-wall (x) direction. Can be used alone 
(for pairs of surface cracks), or with an additional parameter defining the depth of Crack B 
(when there is an embedded crack). Exactly one of the following variables must be defined: 
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o dOveraA1 – Distance in x between crack edges (d), normalised to the depth of Crack 
A (aA1). 

o dOverb – Distance in x between crack edges (d), normalised to plate thickness (b). 
o dOverMax_aA1_2aB1 – Distance in x between crack edges (d), defined as a ratio of 

max([aA1,2*aB1]). 
o normalisedOffset – Distance in x between crack centres, normalised by the mean 

crack width. normalisedOffset = 1-(d/(aA2+aB2)). 
o overlapRatio – Ratio of crack width overlapping in x. At overlapRatio = 0, near-side 

crack tips are at the same location in x. At overlapRatio = 1, the cracks are aligned. 
o twoaA2OverdCents – Special-purpose parameter, used for comparison with 

Sethuraman et al. 2003. 
o sOverb – Parameter defining the distance of closest approach between the crack tip 

lines. This is used in lieu of parameters defining the separation distances in x and y. 
sOverb is the closest approach between the crack tip lines (s), normalised to plate 
thickness (b). Note that for semi-elliptical cracks emanating from the same surface, 
this is the same as dOverb. 

• Parameter defining a crack depth or separation distance in the through-thickness (y) direction. 
If there is a single crack (Crack A) and it is an elliptical embedded crack, its depth (distance of 
closest approach to xz plane) can be defined using d2Overa, d2Overb or normalisedOffsetY. 
Otherwise, when there are two cracks and Crack B is a sub-surface crack, exactly one out of 
any of the following variables must be defined: 

o d2Overa – Distance from the xz plane to the closest point on the crack tip line of the 
subsurface defect (d2), normalised by the depth of Crack A (aA1). 

o d2Overb - Distance from the xz plane to the closest point on the crack tip line of the 
subsurface defect (d2), normalised by the wall thickness (b). 

o normalisedOffsetY – If there are two cracks, this is the distance in x between crack 
centres, normalised by the mean crack depth: i.e. normalisedOffsetY = 
1+(S/(aA1+aB1)). If there is only one crack, this is the distance in y of the crack centre 
from the plate mid-thickness, normalised by the plate thickness: i.e. yA = d2 + aA1 = 
b*(0.5-normalisedOffsetY).  

o SOvera - Distance in y between cracks (S), normalised to Crack A depth (aA1). 
o SOverb – Distance in y between cracks (S), normalised to wall thickness (b). 
o SOverc – Distance in y between cracks (S), normalised to Crack A width (aA2). 
o SOverSqrtac – Distance in y between cracks (S), normalised to Crack A dimensions 

sqrt(aA1*aA2). 
o sOverb – Parameter defining the distance of closest approach between the crack tip 

lines. This is used in lieu of parameters defining the separation distances in x and y. 
sOverb is the closest approach between the crack tip lines (s), normalised to plate 
thickness (b). 

• plDepth – Depth of the plate. This must be defined for plate models. 
• b – Thickness of the wall. This must be defined for plate models. For pipe models, either the 

b or riOverro parameter is required. 
• ri – Scalar defining the internal radius of the pipe. Must be defined when analysing models 

with pipe geometry. 
• riOverro – Pipe inner/outer radius ratio. For pipe models, either the b or riOverro parameter 

is required. 
• Parameter defining the half-width of the plate (or half-length of pipe). 
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o plHalfWidth – Half-width of the plate (or half-length of pipe). Default is 50*b. 
o plHalfWidthOveraA2 - Half-width of the plate (or half-length of pipe) normalised by 

the half-width of Crack A (aA2). 
o plHalfWidthOveraA2plusb - Half-width of the plate (or half-length of pipe) normalised 

by the half-width of Crack A plus the plate thickness (aA2 + b). 

7.2 loadingParams (paramRangeStruct.loadingParams.*these sub-fields*) 
• loadingType – String defining the type of loading to be applied to the model. Can be ‘load’, 

‘moment’, ‘combined’, ‘crackFacePressure’, ‘pipePressure’ or ‘pipePressureInclCrack’. The 
effects of each option are as follows: 

o ‘load’: Load is applied to the far edge of the plate through a kinematic coupling. 
o ‘moment’: Moment is applied to the far edge of the plate through a kinematic 

coupling. 
o ‘combined’: A load and a moment are applied to the far edge of the plate through a 

kinematic coupling. 
o ‘crackFacePressure’: Pressure loading is applied directly to all crack faces. In LEFM, 

this is used to simulate any arbitrary through-wall stress distribution. The pressure 
can be an arbitrary function of (see CFPArray). 

o ‘pipePressure’: Used when geometryType = ‘pipe’, this applies a uniform pressure to 
the pipe’s internal surface. The crack faces are not loaded. 

o ‘pipePressureInclCrack’: Used when geometryType = ‘pipe’, this applies a uniform 
pressure to the pipe’s internal surface, and to the faces of any cracks which are open 
to the internal surface. 

• CFPArray – n-by-1 cell array of strings defining the loading distributions when 
loadingType=’crackFacePressure’. Typical string would be ‘1-(0*(Y/1000))’ (tension) and ‘1-
(2*(Y/1000))’ (through-wall bending). Note that there is no automatic normalisation of the 
pressure w.r.t. the plate thickness. 

• loadMagnitude – numeric array defining the magnitude of the applied load when 
loadingType=’load’ (or the applied moment when loadingType=’moment’). loadMagnitude 
should be a column vector of loads/moments if loadingType=’load’ or loadingType=’moment’. 
The length n of the column vector is equal to the number of different loading states to be 
considered. When loadingType=’combined’, loadMagnitude is an array of size n-by-2 (the first 
column specifies load, the second specifies moment). If the parameter 
loadMagnitudeUnitWidthFlag is included and set to true, loadMagnitude specifies the 
load/moment per unit of plate width. Otherwise loadMagnitude specifies the total 
load/moment applied to the whole plate. Notes: 

o The default width of the plate being analysed is 100x the thickness b, although it can 
be set explicitly (using plHalfWidth). For example, when using a N-mm-MPa 
convention: to analyse a plate of 50 mm thickness with a uniform tension of 500 MPa 
applied will require a loadMagnitude of 50mm x (100x50mm) x 500MPa = 
1.25e8 Newtons. 

o In bending, a negative bending moment about the x-axis will cause a tensile stress the 
y=0 side of the plate thickness. This is generally what is required, since this will cause 
crack-opening of cracks emanating from the y=0 face. 

o For calculating the required moment for linear elastic cases (i.e. when calculating SIFs) 
the equation for ligament stress may be useful: 

𝜎𝜎 =
𝑀𝑀𝑀𝑀
𝐼𝐼
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where 𝜎𝜎 is the ligament stress, 𝑀𝑀 is the moment, 𝑦𝑦 is the distance from the neutral 
axis, and 𝐼𝐼 is the second moment of area. The second moment of area of a beam of 
rectangular cross-section is: 

𝐼𝐼 =
𝑏𝑏𝑑𝑑3

12
 

where 𝑏𝑏 is the beam width and 𝑑𝑑 is its depth. 

o For calculating the required moment for limit load cases, the equation for the fully-
plastic bending moment for a beam of rectangular cross-section may be useful: 

𝑀𝑀 = �
𝑏𝑏𝑑𝑑2

4 �𝜎𝜎𝑦𝑦 

o When using loadingType=’combined’ none of the values in the array loadMagnitude 
should be zero. To analyse pure tension as part of a set of ‘combined’ loading states, 
use an arbitrarily small bending moment with it eg. […; 1.25e8, 1 ; …]. The same goes 
for analysing pure bending as part of a set of ‘combined’ loads: use an arbitrarily small 
tension load as well. 

• loadMagnitudeUnitWidthFlag – Logical which may be used in conjunction with 
loadMagnitude. When set to true, this indicates that the values of load and/or moment 
specified in loadMagnitude are per unit of plate width. When set to false (which is the default 
if loadMagnitudeUnitWidthFlag is omitted), the values of load and/or moment specified in 
loadMagnitude are for the whole plate. 

• pressureMagnitude – Scalar which defines the pipe internal pressure when 
loadingType=’pipePressure’ or loadingType=’pipePressureInclCrack’. 

• biaxialFlag -  Logical which defines whether the loading on the crack is biaxial. For pressurised 
pipes, biaxialFlag=false is used for simulating open-ended conditions and biaxialFlag=true is 
used for simulating closed-ended conditions. 

• biaxialStress – Scalar which defines the magnitude of the biaxial stress. To simulate the axial 
stress which results from pressure in closed-ended pipes, set biaxialStress=NaN and 
int_defects will calculate the appropriate axial stress based on the pressure and the pipe 
geometry. 

 

7.3 materialParams (paramRangeStruct.materialParams.*these sub-fields*) 
• type – Defines the type of material model to be used. Can be ‘linear elasticity’, ‘deformation 

plasticity’ or ‘incremental plasticity’. These correspond directly to the standard material 
model types available in Abaqus. 

• Elastic parameters (required for all material models). 
o E – Young’s modulus 
o nu – Poisson’s ratio. Default is 0.3. 

• Parameters required by the ‘deformation plasticity’ model type. 

Loading conditions and model incrementation should be considered carefully. For example, in a limit load 
analysis you should first estimate the load/moment/pressure which will cause the structure to reach global 
collapse, then ensure that the magnitude of loads applied to the model is greater than this. When using pipe 
geometry under pressure, consider whether the pipe is open ended (biaxialFlag=false) or closed-ended 
(biaxialFlag=true, biaxialStress=NaN). 
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o s0 – yield strength. 
o n – hardening modulus (in the order of 10 for typical stainless steels) 
o alpha – yield offset. Typically 0.002. Note that the yield offset parameter definition 

used by Abaqus differs from the conventional definition. See Abaqus documentation 
on *DEFORMATION PLASTICITY for details. 

• Parameters required by the ‘incremental plasticity’ model type. 
o plasticTable – n-by-2 table of true stress vs logarithmic plastic strain data. 

7.4 modelParams (paramRangeStruct.modelParams.*these sub-fields*) 
• nlgeomFlag – Logical indicating whether or not the model should be considered geometrically 

non-linear, or whether small-displacement formulation should be used. It is recommended 
that geometrically non-linear analysis should be used for determination of limit loads using 
elastic → perfectly-plastic models. 

• noTipElemsA & noTipElemsB – Number of elements along one semi-ellipse of the Crack A and 
Crack B tip lines. 80 is a sensible value of these parameters for most applications. Meshing 
problems may occur if too few elements are used to define the crack tip line. 

• noTipElemsRadial2A & noTipElemsRadial2B – Number of elements in the radial direction in 
the ‘outer’ crack tip zone. Default is 5. Note that the number of elements radially in the crack 
tip zones will limit the number of contours that can be used for K and J output. 

• varShellSizeFlag – Logical defining whether the size of the crack tip element zones is defined 
dynamically. In almost all cases this should be set to true, allowing int_defects to define the 
crack tip element zone sizes. 

• rpA2 & rpB2 – These parameters are used to statically define the size of the ‘outer’ annular 
zone of elements which surround the crack tip. They are only used when 
varShellSizeFlag=false. In most models, these parameters are excluded from 
paramRangeStruct and will be defaulted to NaN, in which case int_defects automatically sets 
the annular region size. 

• stepStr – A string which can be used to set step properties explicitly. It takes the form of a 
piece of Abaqus/CAE scripting interface code which will be used to generate the step options, 
eg. 'mdb.models['Model-1'].steps['ApplyLoad'].setValues(initialInc=0.05, maxInc=0.05, 
maxNumInc=1000, minInc=0.001, timePeriod=1)'. For elastic-plastic and limit load analyses, 
the user should ensure that they use appropriate increment size settings, since these may 
affect the precision of the results. 

• modifyNaturalParamStructStr – A string which can be used to make initial modifications to 
naturalParamStruct at the beginning of int_defects_calc_model_params. This can 
be use to (for example) to create a set of models which represent assessment procedure re-
characterisation of the defects run in an earlier set of models. Currently this must either be 
'DNVGL-RP-F108', or must be and empty string or excluded altogether (in which case no initial 
modifications are made). 

7.5 outputRequests (paramRangeStruct.outputRequests.*these sub-fields*) 
• contourFreqA & contourFreqB – Frequency of contour integral output. Can be: an integer (for 

every n increments, eg. 1 for every increment) or 'LAST_INCREMENT'. (nB. Instead of 
frequency=n or frequency=LAST_INCREMENT, Abaqus would also accept 
numIntervals=*integer* or timeInterval=*positive scalar*). 

• contourNameA & contourNameB – Strings defining names for the output requests. 
• contourTypeA & contourTypeB – Type of contour integral output. Can be: ‘none’, 

‘K_FACTORS’, ‘J_INTEGRAL’ or ‘T_STRESS’. (nB. Abaqus would allow ‘C_INTEGRAL’ also). 



23 
 

• custom – A string defining a custom output request, which will be added to the *STEP block 
of the Abaqus .inp file. This is most useful for requesting field variable output. For example, 
‘** OUTPUT REQUESTS 
 *El Print, Elset = PlatePartitioned-1.Set-1, Position = Centroidal, Frequency=1 
 PEEQ’ 
Would be used to request equivalent plastic strain output for the complete model. 

• noContoursA & noContoursB – Number of contours. Note that this is limited by the number 
of elements in the radial direction of the crack tip mesh region(s), which is defined by 
noTipElemsRadial2A & noTipElemsRadial2B. So for example, noContoursA should be less than 
or equal to noTipElemsRadial2A, or the Abaqus model will fail due to the invalid contour 
output request. 

  



24 
 

8. Validation 
Validation of int_defects output has been performed via comparison with previous results from 
other authors. int_defects allows the user to define many aspects of the analysis. Many of these, 
such as the FE mesh density and the time incrementation in an elastic-plastic model, can affect the 
accuracy of the result. The validation examples listed in this section have only compared 
int_defects results acquired using “sensible” input options. 

In all of the cases listed below, the agreement between results from int_defects and existing 
solutions was considered good. Detailed quantitative results are not given here; the purpose of this 
listing is to allow users to replicate the validation if necessary. 

 

8.1 Linear-elastic analysis 
Comparison between linear elastic analysis results from int_defects and results from existing 
literature have been performed. Comparison cases include: 

• Single semi-elliptical surface cracks in an elastic plate under tension and bending. FEA solution 
of Newman & Raju [6]. Comparison of SIFs across crack front. 

• Twin semi-elliptical surface cracks in an elastic plate under tension. FEA solutions of Yoshimura 
et al. [7] and Sethuraman et al. [8]. Comparison of SIFs across crack front. This comparison is 
discussed in: “Stress intensity interaction between dissimilar semi-elliptical surface cracks”, 
Coules 2016 [9].  

8.2 Inelastic analysis  
For elastic-plastic and limit-load analysis of 3D cracks, the existing literature is more limited than for 
linear-elastic solutions. Comparison cases for which int_defects has been checked include: 

• Single semi-elliptical surface crack in an elastic-plastic plate under tension. The material 
stress-strain curve is described by a “Linear Plus Power Law” (LPPL) relationship. FEA solutions 
of Allen & Wells [10]. Comparison of SERR across crack front. 

• Single semi-elliptical surface crack in an elastic-plastic plate under tension. Material stress-
strain curve (aluminium alloy 2219-T8) defined directly from a tensile test. FEA solutions from 
the ASTM modelling round-robin coordinated by Wells & Allen [11], which were validated by 
comparison to experimental fracture test results. Comparison of SERR across crack front. 

• Single semi-elliptical surface flaws in an elastic-perfectly-plastic plate under tension. Classic 
limit load solution by Willoughby & Davey – an experimentally-validated analytical (plastic 
hinge) result [12]. Comparison of Local Limit Load. This comparison is presented in: “Analysis 
of defect interaction in inelastic materials”, Coules & Bezensek 2019 [13]. 

• Single semi-elliptical internal axial-radial surface flaw in a thick-walled pipe under combined 
centripetal acceleration and thermal shock. Experimentally-validated round-robin FEA results 
from the NESC-1 study [14]. Comparison of SERR at deepest and near-surface points. This 
comparison used models based on the int_defects package, but which extended it (eg. 

It is strongly emphasised that users should perform their own validation tests specific to the analysis type and 
geometry that they are studying. A range of analyses are possible using int_defects, and any general 
validation effort cannot guarantee the accuracy of results in all possible applications. 
 
Please help to build these lists of validation cases by reporting results to: harry.coules@bristol.ac.uk 
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to thermal shock). This comparison is presented in: “Parametric design of scaled-down 
pressurised thermal shock test specimens using inelastic analysis”, Coules et al. 2017 [15]. 
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Appendix A: Workflow examples 
A.1 Simple elastic analysis of a single surface flaw (with varying flaw size) 
In this example, we create three models of a single semi-elliptical surface flaw in an elastic plate under 
remote tension. The flaw has an aspect ratio of a/c = 0.5 in all cases, while the normalised flaw depth 
is a/b = 0.125, 0.25, 0.5. 

1. Copy the master python file “IntCrackJob1_6.0.4_single_master.py” into the working 
directory. 

2. Using MATLAB, construct the data structure paramRangeStruct defining the model set. Save 
it in a .mat file. 

 

3. Run int_defects_write_inp_parametric.  

 

4. Run int_defects_run_parametric_parallel. This will run the Abaqus/Standard 
analysis. 
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5. Run int_defects_read_parametric. This will read the results from the .dat files into 
the array outputArray. 

 

6. You can plot the SIF as a function of position on the crack tip (given by the ellipse parametric 
angle) using plot_KI_over_crack. The SIF data can be found in: mainStruct.outputArray. 
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A.2 Determining elastic interaction factor for a flaw pair (with varying separation distance) 
To determine the elastic interaction factors for the flaw pair, we will create two sets of models: one 
set which contains all the pairs of interacting surface flaws what we want to analyse, and one set 
which contains single surface flaws. The set of single surface flaws must contain flaws with all the sizes 
and aspect ratios that occur in the twin flaw models. In the case where there is interaction between 
an embedded and a surface defect, a third set of models is required (all sizes/aspect ratios of the 
embedded defects alone). 

In this example, the surface flaws always have the same depth (a/b = 0.25) and aspect ratio (a/c = 0.5). 
Three different flaw spacings are investigated (d/b = 0.125, 0.25, 0.5). 

1. Copy the master python files “IntCrackJob1_6.0.4_single_master.py” and 
“IntCrackJob1_6.0.4_master.py” into the working directory. 

2. Using MATLAB, construct the data structure paramRangeStruct defining the model set of 
single flaws. Save it in a .mat file (paramRange_struct_elastic_single.mat here). 
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3. Using MATLAB, construct the data structure paramRangeStruct defining the model set of 
interacting flaws. Save it in a .mat file (paramRange_struct_elastic_twin.mat here). 

 
 

4. Run int_defects_write_inp_parametric for the single flaws, then run 
int_defects_run_parametric_parallel to perform the Abaqus/Standard analysis 
for single flaws. Once this is finished, rename the created directory “abaqus_param_files” to 
“abaqus_param_files_single”. 
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5. Follow Step 3 for the twin flaw model set, this time renaming “abaqus_param_files” to 
“abaqus_param_files_twin”. 

 
 

6. Run int_defects_read_user once for each of abaqus_param_files_single and 
abaqus_param_files_twin. This will extract the results from each model set, and save them in 
the workspace_dump.mat file in each directoy. 
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7. Run int_defects_calc_interaction_factor. This will calculate interaction 
factors. It will write a results file (“results.mat”) into the current directory, along with a logfile 
“log2.txt”. 

 
 

8. You can now load the results in results.mat and run plot_IF_over_crack to generate 
plots of the interaction factor vs position on the crack tip line. The interaction factor data can 
be found in mainStruct.outputArray. 
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A.3 Determining the J-integral at a given load for a single flaw or flaw pair 
This example generates and solves a model of the NASA Analytical Round-Robin for Analysis of Surface 
Cracked Plates (Phase 1) [11]. It performs an elastic-plastic analysis of a single model; there is no 
variation in loading conditions/material/geometry, which are all known (they are specified in the 
round-robin protocol). 

1. Copy the master python file “IntCrackJob1_6.0.4_single_master.py” into the working 
directory. 

2. Using MATLAB, construct the data structure paramRangeStruct defining the model of the 
Phase 1 round-robin case. Elastic-plastic material behaviour should be defined using a table 
of true stress vs true strain values (paramRangeStruct.materialParams.plasticTable). Note that 
this defines the material’s plastic behaviour using incremental plasticity theory, with a von 
Mises yield locus and an isotropic hardening characteristic. J-integral output should be 
requested (paramRangeStruct.outputRequests.contourNameA = ’CrackAOutJ’ and 
paramRangeStruct.outputRequests.contoutTypeA = ‘J_INTEGRAL’). To ensure many 
increments of J-integral output during a ramp-up of loading, a maximum increment size 
should be set: paramRangeStruct.stepStr = ‘mdb.models['Model-
1'].steps['ApplyLoad'].setValues(initialInc=5, maxInc=5, maxNumInc=1000, minInc=1, 
timePeriod=289)’. 
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3. Create and run the models. For this example, model creation and execution was performed 
on a remote Linux server using the following commands: 

int_defects_write_inp_parametric('paramRangeStruct_NASA_P1_2.mat','I
ntCrackJob1_6.0.4_single_master.py','abaqus',600); 

load('abaqus_param_files/workspace_dump.mat'); 

int_defects_run_parametric_parallel(paramLogStruct,filenamesStruct,'
abaqus',44000,1,4,false,true); 

4. Navigate to the model directory for Model #1 and run 
int_defects_plot_J_vs_stress to plot J vs step time (which is equivalent to the 
applied load in kN in this case). In this example, it has been determined that the 8th node along 
the crack tip line is at an ellipse parametric angle of 15.97°. This is close to 17° which was used 
for comparison in the NASA round robin, and so the J-integral for Node 8 is plotted: 
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The J-integral result shown in the figure above agrees well with round-robin FEA results from 
other labs (see [11], p20, Figure 10a). 
 

A.4 Determining the local limit load for a plate containing a single semi-elliptical surface flaw 
(varying flaw depth and aspect ratio) 
You can use int_defects for determining the Local Limit Load (LLL) for flawed plates, i.e. the load 
at which an unbroken plastic ligament extends from the flaw to the back face of the plate. LLLs can be 
used in structural integrity analysis to conservatively estimate the plastic collapse parameter Lr [1]. 
This example calculates the LLL (expressed as a limit stress) for 15 different single semi-elliptical 
surface flaws in a wide plate under tension: all combinations of a/b = 0.25, 0.5, 0.75 and a/c = 0.3333, 
0.5, 0.6667, 1, 2. Material yielding is predicted using a von Mises yield locus. 

1. Copy the master python file “IntCrackJob1_6.0.4_single_master.py” into the working 
directory. 

2. Using MATLAB, construct the data structure paramRangeStruct defining the models. 
Parameters defining a/b and a/c are given as vectors. The material is defined as being 
elastic-perfectly-plastic (i.e. no strain-hardening) with a yield stress of 360 MPa by setting: 
paramRangeStruct.materialParams.plasticTable = [360,0]. Von Mises equivalent plastic strain 
field output is requested for the whole model using: 
paramRangeStruct.outputRequests.custom = ‘** OUTPUT REQUESTS 
 *El Print, Elset = PlatePartitioned-1.Set-1, Position = Centroidal, Frequency=1 
 PEEQ’. No contour integral output was requested: 
paramRangeStruct.outputRequests.contourTypeA = ‘none’. 

 
 

3. Create and run the models. For this example, model creation and execution was performed 
on a remote Linux server using the following commands: 

int_defects_write_inp_parametric('paramRangeStruct_BB_BLL_single.mat
','IntCrackJob1_6.0.4_single_master.py','abaqus',600); 

load('abaqus_param_files/workspace_dump.mat'); 
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int_defects_run_parametric_parallel(paramLogStruct,filenamesStruct,'
abaqus',44000,2,4,false,false); 

Note that in the call of int_defects_run_parametric_parallel, contDepCheckFlag = 
false. There should be no contour integral data in the .dat file, and so this does not need to be 
checked for contour-dependence. 

4. Navigate into the abaqus_param_files directory and use 
int_defects_plastic_breakthrough_parametric to determine plastic limit 
loads. This may take several minutes. 

 

Note: In the above image, an arbitrarily-small value of equivalent plastic strain (1e-6) has been 
used as the strain tolerance for int_defects_plastic_breakthrough_parametric. 

5. Plot LLLs against aspect ratio for different crack depths: 
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A.5 Determining the J-integral at plastic breakthrough 
Occasionally, it is useful to know the J-integral which occurs at a flaw at the point when a plastic 
ligament develops between it and the back face of the wall. This can be used to compare J-integral 
results for different materials, or as part of a strain-based analysis. For a strain-hardening material, 
the presence of plasticity at any point in the model must be judged using some finite value of strain 
(eg. 5% von Mises equivalent strain). 

In this example, we will determine the J-integral for an embedded elliptical flaw in a plate of elastic-
plastic material subjected to a combined tension and remote bending load. The tension and bending 
loads are increased proportionally to one-another, and the increment of loading at which a ligament 
containing ≥5% plastic strain connects the flaw and the plate surface is determined. Then the J-integral 
results for the flaw at this loading increment are extracted. Only a single flaw geometry is considered. 

The material stress-strain curve used follows a Ramberg-Osgood relationship: 

𝜀𝜀 =
𝜎𝜎
𝐸𝐸

+ 𝛼𝛼
𝜎𝜎
𝐸𝐸
�
𝜎𝜎
𝜎𝜎𝑌𝑌
�
𝑛𝑛−1

 

where 𝜀𝜀 is the true strain, 𝜎𝜎 is the (uniaxial) true stress, the yield stress 𝜎𝜎𝑌𝑌 is taken as 360 MPa, the 
hardening modulus 𝑛𝑛 is 12 and the yield offset parameter 𝛼𝛼 is 1.6667. The material is modelled using 
incremental plasticity theory, with a von Mises yield locus and an isotropic hardening characteristic. 

a. 

 
b. 

 
Figure 4: Embedded semi-elliptical flaw in a plate under combined tension and bending. In these images, the loading applied 
is an equal combination of tension and bending that would, in a perfect linear elastic material, give a linear through-wall 
distribution of stress: from σ33 = 0 MPa on the rear face to 300 MPa on the front face. 

The plate is infinitely wide, with a wall thickness is 25 mm. The flaw is an embedded semi-elliptical 
crack as shown in Figure 3c (Crack B). It has a half-depth in the through-thickness dimension of 
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3.125 mm (a/b = 0.125), a half-width if 9.376 mm (i.e. an aspect ratio of a/c = 0.3333), and depth from 
the plate surface of 3.125 mm (i.e. a normalised depth of d2/a = 1). 

The loading is applied remotely and is an even combination of tension and bending. The bending 
moment per unit of plate width is 36.72 kNmm/mm, which would cause remote ligament stresses of 
±352.5 MPa at the plate surfaces. The tensile load per unit of plate width is 8.81 kN/mm, which would 
cause a uniform tensile stress of 352.5 MPa throughout the thickness of the plate. The superposition 
of these loads causes a through-thickness stress distribution which rises from 0 MPa on the back face 
of the plate to 705 MPa on the front face. The load and moment are increased in proportion to one-
another and ramped linearly over the model time step. 

1. Copy the master python file “IntCrackJob1_6.0.4_single_master.py” into the working 
directory. 

2. Using MATLAB, construct the data structure paramRangeStruct defining the models. The 
material is defined as elastic-plastic using paramRangeStruct.materialParams.plasticTable. 
Von Mises equivalent plastic strain field output is requested for the whole model using: 
paramRangeStruct.outputRequests.custom = ‘** OUTPUT REQUESTS 
 *El Print, Elset = PlatePartitioned-1.Set-1, Position = Centroidal, Frequency=1 
 PEEQ’. No contour integral output was requested: 
paramRangeStruct.outputRequests.contourTypeA = ‘none’. 
 

 
 

3. Create and run the models. For this example, model creation and execution was performed 
on a remote Linux server using the following commands: 

int_defects_write_inp_parametric('paramRangeStruct_BB_CDF_1_combined
_mod1.mat','IntCrackJob1_6.0.4_single_master.py','abaqus',600); 

load('abaqus_param_files/workspace_dump.mat'); 

int_defects_run_parametric_parallel(paramLogStruct,filenamesStruct,'
abaqus',44000,1,8,false,false); 

4. Rename the “abaqus_param_files” directory to add an identifying element to the name, eg: 
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movefile(‘abaqus_param_files’,’abaqus_param_files_BB_CDF_1_combin
ed_mod1’); 

5. Use int_defects_extract_breakthrough_J to determine the J-integral result at 
the time step at which plastic breakthrough (at 5% strain) is first detected. It may take several 
minutes to determine the plastic breakthrough time step and extract the J-integral data. The 
results are written into the file “J_results_*my_runName*.mat”. 
 

 
 

6. Inspecting the contents of J_results_*my_runName*.mat, we can find the following 
information: 
• 5% plastic breakthrough occurs at a model time of 597.5 (outputArrayNear(1) = 597.5). 

Note that in this model, the model time is equal to the maximum remote ligament stress 
in MPa. So a max. remote ligament stress of 597.5 MPa cause 5% plastic breakthrough. 

• At this level of loading, the J-integral is 136.8 N/mm at the point on the crack tip line 
closest to the front face of the plate (outputArrayNear(2) = 136.8). 

• The J-integral is 91.2 N/mm at the point on the crack tip line closest to the front face of 
the plate (outputArrayFar(2) = 139.0). 

• The maximum J-integral encountered anywhere on the crack tip line at this level of 
loading is 139.0 N/mm (outputArrayMax(2) = 139.0). 

A.6 Workflow automation using a bash script 
When running int_defects on a Unix-based system, you can use the shell script 
int_defects.sh to automate the generation and solution of a model set. nB. This script does not 
automate extraction of the results. 

1. Copy the required master python file (“IntCrackJob1_6.0.4_single_master.py” or 
“IntCrackJob1_6.0.4_master.py”) into the working directory. 

2. Edit the shell script int_defects.sh so that it contains the correct input information on 
the indicated lines. 

3. Run: 
chmod +x int_defects.sh 
bash int_defects.sh 
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An echo of the commands that are being executed in MATLAB is written in 
matlab_cmd_log1.txt and matlab_cmd_log2.txt. 
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Appendix B: Hints and tips 
B.1 Parameter ranges 

• When defining a parameter set (i.e. when constructing paramRangeStruct) for the first time, 
it is easy to accidentally omit required parameters. In most cases, 
int_defects_write_input_parametric should provide informative errors about 
what parameters are missing or have unacceptable values. It may be useful to copy a similar 
parameter set from one of the examples given in Appendix A and then adapt it to the task at 
hand. 

• The range of crack aspect ratios that can be meshed by Abaqus/CAE depends on factors such 
as the number of mesh seeds and the size of the inner and other crack tip mesh zones, both 
of which are specified in paramRangeStruct. As a rule of thumb, cracks with an aspect ratio in 
the range 0.25 ≤ a/c ≤ 4 will usually mesh without problems, although much smaller/greater 
aspect ratios are possible in some cases. 

• When defining a parameter set (i.e. when constructing paramRangeStruct) it is not necessary 
to ensure that all possible combinations of the defined parameters would give a geometrically-
valid model. For example, if one combination of parameters defined flaws which overlapped, 
this model would not be attempted: int_defects_write_inp_parametric will 
simply move on to the next combination. A log of the invalid parameter combinations is made 
in paramLogStruct, and a summary of invalid combinations will be given in log1.txt. 

• For models of interacting flaws, the flaw spacing can be specified in a large number of different 
ways in paramRangeStruct. It is worth thinking carefully about what parameter the crack 
spacing should depend on, and the range of parameter values, since this will depend on the 
objective of the study. 

• When setting up int_defects to run a large set of models with different parameters, it is 
often useful to first run a smaller set containing all the extreme parameters. If there are any 
problems relating to the input parameters, this will make them apparent much more quickly 
than if the large model set was run straight away. 

B.2 Results 
• When running sets of models, you can use the input argument abaqusCleanupFlag=false in 

int_defects_run_parametric_parallel to prevent deletion of each model’s .odb 
file. The .odb can then be inspected using Abaqus/CAE, which is useful for troubleshooting or 
to allow export of images. 

• When analysing the results from a set of models, it is often useful to view the parameters of 
each individual model in a set. Use paramLogStruct in 
abaqus_param_files\workspace_dump.mat to review the parameters and execution status of 
a model after the event. 

• int_defects_read_parametric_parallel (and int_defects_read_user, 
which calls it) returns contour integral data for all available contours reported by Abaqus. For 
example, outputArray{1,3}.k{2,2}(end,:) contains the SIFs for third model in the series, second 
crack in the model, outermost available contour. outputArray{1,3}.k{2,2}(end,1) would give 
the results for the innermost available contour. Use of the outermost available contour is 
recommended. The number of contours requested can be set in: paramRangeStruct 
(outputRequests.noContoursA and outputRequests.noContoursB). 
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B.3 Other 
• Always be aware of the resources that are required for running models using Abaqus/Standard 

– including both no. of CPUs and the amount of available RAM relative the size of the models 
being run. Set timeouts for int_defects_write_inp_parametric and 
int_defects_run_parametric_parallel. 

• int_defects is designed to allow robust model generation and solution. If one model in a 
set fails to mesh or solve, or even if many models encounter problems, int_defects can 
still proceed with processing the rest of the model set. This means that with a dedicated 
machine and with enough time, you can process very large sets of models (thousands). The 
largest number of models in a single set analysed with int_defects so far is 7350 [9]. 
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Appendix C: Known bugs and wish list 
C.1 Known bugs 
In this context, ‘bugs’ are defined as functionality which should work but doesn’t, rather than 
limitations of the software or ‘missing’ features. 

• No documented bugs. 

C.2 Wish list 
• Add explicit definition of the crack extension direction, i.e. using q-vectors rather than a crack-

plane normal. 
• Add functionality to allow the study of embedded-embedded defect interaction. 
• Currently int_defects_write_inp_parametric creates models for all possible 

combinations of the parameters given in paramRangeStruct. In some cases it would be useful 
to be able to define a subset of all combinations of parameters to analyse, which could reduce 
the time spent building and solving models for “less interesting” regions of the parameter 
space. 

• Add interoperability with the Warp3D FE solver. 
• Improve readability of the scripting interface code Python code that is generated by 

int_defects when creating models. For example, use a consistent and descriptive set of 
object names. 

• Add functionality for using existing Abaqus thermal model solutions as the loading case. 
nB. This was already done in [15], but has not made its way into the main branch of 
int_defects. 

• Add functionality for creep analysis, including model generation options and extraction and 
post-processing of C* contour integral results. 
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Appendix D: Development history and acknowledgements 
D.1 Development history 
I developed the initial versions of this software in late 2015 as part of an EPSRC-funded postdoctoral 
research fellowship on nuclear structural integrity (EPSRC grant no. EP/M019446/1). It was designed 
for validating flaw interaction rules used in the R6 structural integrity assessment procedure and was 
initially a code library targeted at linear-elastic analysis only. Checking the adequacy of these 
interaction rules required a large number of FE models and so an automatic way to deal with model 
generation and submission handling was the natural response. 

The software was developed intermittently from 2015-2018: the addition of new features was done 
ad hoc to support specific studies on flaw interaction, some of which are listed in Section 9.2. In late 
2018 I decided to release int_defects as a MATLAB toolbox and began work on documenting its 
features and rationalising its code structure. 

int_defects is written in MATLAB code and packaged as a toolbox. This has the advantages of 
enabling easy analysis and plotting of results, as well as easy distribution. MATLAB is also the high-
level language that I am most familiar with. On the other hand, int_defects also uses the 
Abaqus/CAE scripting interface which is Python-based. Therefore, it would be more elegant for the 
model generation parts of int_defects to be written in Python, which unlike MATLAB is also free 
and open-source. Since the toolbox works well in its current form, I have no plans to recode any parts 
in Python. 

Harry Coules, 06/2019 
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