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Abstract 24 

Crossing roads ranks amongst the most dangerous activities for pedestrians. Roads can be crossed at 25 

controlled, signalised locations, where traffic lights or zebra crossings regulate the behaviour of all 26 

traffic participants, or at unmarked locations, where pedestrians typically do not have priority. 27 

Technological advances mean it is now possible to record observational data on pedestrian road 28 

crossing behaviour from public roads almost continuously using commercially available sensors. Here, 29 

we report on such a data collection campaign in Bristol, UK. We record the movement paths of traffic 30 

participants within the field of view of commercial camera-based sensors at two unmarked crossing 31 

locations. Between January and April 2022, we detect over 30,000 pedestrian road crossings across 32 

the two locations. We first explore the time series of hourly crossing counts, finding pronounced and 33 

regular temporal patterns that differ between locations, and that have not been reported before. We 34 

then investigate the relationship of crossing numbers with road traffic characteristics and extraneous 35 

factors, such as university term dates, confirming previous findings on traffic volume reducing crossing 36 

frequency and the differences between our study sites. Finally, by studying the timing and distance 37 

between consecutive crossings we find evidence for social crossing behaviour, such as groups crossing 38 

synchronously. We conclude that temporal patterns in road crossing behaviour exist, and that they can 39 

differ across locations, which is relevant for research and road safety design. In addition to the specific 40 

findings on road crossing behaviour of our study, a key contribution of our work is a case study for how 41 

to work with large-volume, low-fidelity observational data on pedestrian behaviour that is becoming 42 

increasingly available and has the potential to transform pedestrian road safety research. 43 

 44 
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1. Introduction 46 

 47 

Pedestrian safety on roads remains an important global issue (Theofilatos et al., 2021). For example, 48 

in the year 2021 in the United Kingdom alone, 361 pedestrians were killed, 5,032 were reported to be 49 

seriously injured, and 11,261 were slightly injured in road accidents (Department for Transport, 2022). 50 

Most of these accidents involve cars or other motorised vehicles, meaning that entering or crossing 51 

roads rank amongst the most dangerous activities for pedestrians. Consequently, much research has 52 

been directed at understanding road crossing behaviour, both at an individual level and including driver 53 

behaviour, and at the level of different pedestrian facilities, such as signalised, unsignalized, marked, 54 

and unmarked road crossing locations (e.g., reviewed in Amini et al., 2019; Ghomi & Hussein, 2022; 55 

Theofilatos et al., 2021). 56 

A particular safety risk arises when pedestrian behaviour deviates from the expectations of 57 

drivers (Sheykhfard et al., 2021). Such behaviours can be violations of traffic rules, or simply 58 

unexpected actions, such as suddenly running onto an unsignalized marked crossing without signalling 59 

an intent to do so. Such pedestrian behaviour can be broadly split into two categories (Ghomi & 60 

Hussein, 2022): temporal deviations (e.g., when pedestrians cross the road when traffic signals are on 61 

red for them) and spatial deviations (e.g., when pedestrians cross the road at a location where they 62 

should not cross the road). Here, we investigate the latter case, spatial deviations, which is often 63 

termed jaywalking, even though the appropriateness of this term is debated (e.g., Hough, 2022; 64 

Norton, 2007). To avoid using this contentious term, we will refer to road crossings throughout, even 65 

though we focus on the specific scenario that has often been described as jaywalking or road crossings 66 

at unmarked midblock locations. 67 

To understand and ultimately predict or prevent unsafe situations arising from such road 68 

crossing behaviour, studies have focussed on determining the factors responsible for it and several 69 

comprehensive reviews of this literature are available (Anik et al., 2021; Ghomi & Hussein, 2022; 70 

Theofilatos et al., 2021). An important group of factors relates to the physiological and psychological 71 

characteristics of the pedestrians themselves. The speed at which pedestrians walk (or can walk) 72 

determines how long it takes them to cross the road. This is used in the design of green-red phases for 73 

traffic signals and importantly it determines the minimum time gap between consecutive vehicles on 74 

the road that pedestrians require to be able to complete their crossing (Forde & Daniel, 2021; Amini 75 

et al., 2019). Gap acceptance theory has been developed to explain which gaps between vehicles 76 

pedestrian accept as large enough to cross the road and what aspects influence these crossing 77 

decisions (Kadali & Vedagiri, 2013; Theofilatos et al., 2021). Aspects studied related to pedestrian 78 

characteristics include communication during/prior to crossing, gaze directions, age, gender, walking 79 

in a group with others, social norms, time pressure, mobile phone use, trip purpose, and even socio-80 

economic factors, such as vehicle ownership (Dommes et al., 2012; Amini et al., 2019; Ghomi & 81 

Hussein, 2022; Theofilatos et al., 2021 ; Anik et al., 2021). Effects found are diverse and not necessarily 82 

consistent across studies (see also below). 83 

The gap sizes between vehicles are determined by the traffic conditions and there appears to 84 

be consensus that traffic conditions influence the frequency of road crossings. However, the precise 85 

nature of these effects is less clear (Ghomi & Hussein, 2022). For example, average traffic speeds may 86 

influence different age groups in different ways (Ghomi & Hussein, 2022), and while traffic volume has 87 

been found to reduce the number of road crossings (Wang et al., 2021), other studies highlight the 88 

importance of time gaps between vehicles which depends on traffic speed and density, vehicle types 89 

(Ghomi & Hussein, 2022), and the noise emitted by vehicles, comparing combustion to electric engines 90 

(Soares et al., 2021). Environmental factors, such as weather conditions, have also been considered 91 

(Amini et al., 2019; Ghomi & Hussein, 2022; Theofilatos et al., 2021). Models have been developed to 92 

predict aspects of the decisions or movement paths of people crossing the road as a function of some 93 
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of these traffic and pedestrian characteristics to better understand this behaviour and to make it more 94 

predictable (Kadali & Vedagiri, 2013; Amini et al., 2019; Anik et al., 2021; Zhu et al., 2021).  95 

 Another line of investigation that we also follow in this contribution shifts the focus from 96 

individual behaviour to comparing aggregated behaviour across locations. For example, findings 97 

suggest that average crossing speeds differ across locations (Govinda et al., 2020), and a comparison 98 

of road crossing intentions between two different cities (Dalian, China and Djibouti, Djibouti), suggests 99 

that social norms, the perceived ability to judge the situation, and goals can differ across cultures (Aden 100 

et al., 2021). Higher average traffic speeds have been suggested to reduce the volume of road crossings 101 

(Acharya & Marsani, 2019), and the installation of traffic signals has been suggested to reduce the 102 

walking speed and increase the waiting times of pedestrians at crossing locations (Asaithambi et al., 103 

2016). Characteristics of the built environment, including land use (e.g., residential vs commercial), the 104 

number of lanes, bus stops, and the presence of traffic islands in the middle of the road have been 105 

suggested as being relevant (Amini et al., 2019; Ghomi & Hussein, 2022; Theofilatos et al., 2021). The 106 

concept of gap acceptance theory has been further developed into a proactive method for pedestrian 107 

safety that computes safety margins based on the difference between gap sizes and pedestrian 108 

crossing times to assess the accident risks at different road crossings (Kadali & Vedagiri, 2016). In a 109 

different vein, the crash severity at midblock locations has received considerable attention with models 110 

being developed to predict the severity of crashes at locations, based on built environment, socio-111 

demographic, and other features (e.g. Pour et al. (2017), and references therein). 112 

 This body of research indicates the difficulty of pinpointing the key drivers for pedestrian 113 

crossing behaviour. Recognising this problem, authors have started to conduct meta-analyses to 114 

combine the insights gained from different studies. Ghomi & Hussein (2022) conduct a meta-analysis 115 

to examine the effect of some of the abovementioned factors on the frequency of pedestrian crossings 116 

that violate rules across published studies with a focus on historical collision records. This analysis finds 117 

agreement across studies on some factors, such as the presence of bus stops increasing road crossings, 118 

but is inconclusive on other factors, such as vehicle speeds, age, and gender. A different meta-analysis 119 

focusses on factors influencing gap acceptance probabilities in pedestrians, finding that vehicle speed, 120 

gap size, and frequency of attempts but not waiting time had significant effects (Theofilatos et al., 121 

2021). The substantial variability across studies found in these meta-analyses and the findings on 122 

differences between locations suggests that road crossing behaviour depends on many factors that 123 

may not always have been measured in previous work. The main contribution of our work is that we 124 

focus on an aspect that has received little attention to date: temporal variation in road crossing 125 

behaviour. 126 

Data collection in studies on pedestrian road crossing behaviour has employed observations, 127 

such as videographic surveys (Asaithambi et al., 2016, Acharya & Marsani, 2019), surveys (Aden et al., 128 

2021), and controlled experiments, for example using virtual reality (Feldstein & Dyszak, 2020; Soares 129 

et al., 2021) or mixed reality (Dommes et al., 2012; Dommes et al., 2014). Studies that consider 130 

aggregate behaviour at urban locations typically involve monitoring over limited time periods, such as 131 

an hour a day for several days (Asaithambi et al., 2016; Acharya & Marsani, 2019). Consequently, 132 

temporal patterns in road crossing numbers are not well understood. For example, the underlying 133 

motivation of pedestrians, or other behavioural patterns may change systematically throughout the 134 

day, and this may influence the frequency with which pedestrians cross the road at unmarked locations. 135 

In one of the first studies considering this issue, it has been argued that not accounting for such effects 136 

could mask other relevant factors and a model was proposed to account for temporal variation in 137 

crossing behaviour across discrete time periods, without studying these changes explicitly (Zhang & 138 

Fricker, 2021). Here, we record data continuously over four months and can thus, to the best of our 139 

knowledge, for the first time, explicitly investigate the nature of temporal patterns in pedestrian road 140 

crossing behaviour at different locations. 141 
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The three main contributions of our work to research on pedestrian road crossings at 142 

unmarked locations are as follows. First, a substantial data set on pedestrian road crossing behaviour 143 

spanning four months at two different urban locations. Second, a proof of principle for analyses 144 

considering the relationship between road crossing numbers and traffic and extraneous variables and 145 

considering the spatial and temporal coincidence of crossings. Third, the explicit investigation of 146 

temporal patterns in road crossing numbers. In the remainder of this manuscript, we present our data 147 

collection and analysis methods, followed by our findings, and we conclude by discussing our 148 

contribution in the context of previous work. 149 

 150 

 151 

2. Methods 152 

 153 

2.1. Data collection 154 

Data were collected using two commercial traffic sensors installed at distinct locations in the city of 155 

Bristol, UK. The traffic sensors, supplied by the company Vivacity Labs Ltd (URL: 156 

https://vivacitylabs.com/, accessed 23rd August 2023), continuously process images from an on-board 157 

digital camera and record the time, location, and type of all detected road users. Due to the 158 

commercial nature of the sensors, the exact algorithms for image and data processing on sensors are 159 

not available. For privacy reasons, sensors do not store image data. Time points are given in 160 

milliseconds and road user positions can be tracked at a frequency of up to 10Hz, although this is not 161 

necessarily achieved consistently, as explained in the following. A proprietary image processing 162 

algorithm is used to detect road users in video frames and to classify the transport mode into a range 163 

of categories, including pedestrian, cyclist, car, light goods vehicle, heavy good vehicle, and more. For 164 

this study, we only consider three categories: pedestrians, cyclists, and all other motorised vehicles. 165 

Incomplete detections or misclassifications can result in road users not being tracked consistently 166 

(information on sensor validation is provided in section 2.3). Road user positions are provided as pixel 167 

coordinates on video frames and as latitude longitude coordinates. Two types of output from the 168 

sensors are available. First counts of road users crossing virtual count lines are provided every 5 169 

minutes. This data is obtained from processing the raw position data and validated by the company 170 

(see below). Second, files containing tracklets (trajectory segments) of road users are saved in 5 minute 171 

intervals. This data relies on a proprietary tracking algorithm that stitches recorded positions together 172 

into tracklets. We use both types of output in this study. We use the positions provided by sensors 173 

directly without applying a smoothing to tracklets, as we have no ground truth to determine the 174 

adequacy of such approaches. 175 

 The two locations selected for this study are at different points along the same road running 176 

through central Bristol (B4051). Both locations cover a stretch of road without a signalised road 177 

crossing for pedestrians, although these are available nearby. The locations were chosen because they 178 

show high levels of pedestrian traffic, and because they differ in the provision of shops, education, and 179 

employment providers nearby. Location 1 is close to the campus of the University of Bristol 180 

(51.455592861621525°N, 2.6003341981723747°W), and location 2 is immediately adjacent to a major 181 

hospital, the Bristol Royal Infirmary (51.45773547023158°N, 2.596965343668497°W). At both 182 

locations there are pavements on both sides of the road, and the road has two lanes, one for each 183 

direction of traffic. For location 1, the virtual count lines cover both pavements and the width of the 184 

road, whereas for location 2, only the pavement and road lane nearer to the sensor are covered by 185 

virtual count lines. The lighting conditions at both locations mean that data collection is possible day 186 

and night. This data collection was approved by the Faculty Research Ethics Committee in Engineering 187 

at the University of Bristol (application ID: 2021-9472-9213) 188 

https://vivacitylabs.com/
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Figure 1 provides an overview of the data collected and the two locations. The trajectories 189 

shown in Figure 1(a,b) demonstrate the level of noise in the accuracy of positional measurements. At 190 

location 1 (university periphery), the northern side of the road borders the university campus, whilst 191 

the southern side borders a row of shops, including cafes and food outlets. The stretch of road covered 192 

by the sensor covers bus stops on both sides of the road. A signalised pedestrian crossing is located 193 

nearby, but not in the field of view of the traffic sensor (see Figure 1(c) for details). At location 2 194 

(hospital periphery), the north-western side of the road borders the main hospital building and the 195 

south-eastern side of the road borders one café, other shops, and a university medical education and 196 

research institute. As for location 1, a signalised pedestrian crossing is located nearby, but not in the 197 

field of view of the traffic sensor (see Figure 1(d) for details). For this study, we use data from 1am on 198 

the 1st of January 2022 up to 12am on the 30th of April 2022. During this period, no travel restrictions 199 

or shop opening restrictions were in place due to the Coronavirus pandemic (Brown & Kirk-Wade, 200 

2021). Teaching at the university was delivered in person, although many students (especially non-UK 201 

students) made use of online teaching provision rather than attending classes in person. 202 

 203 

 204 
Figure 1: Data collection. (a) pedestrian (blue) and car (green) trajectories captured 8.10-8.20am on 205 

the 13th of October 2022, superimposed onto a traffic sensor camera still image (blurred for privacy) 206 

at locations 1 (university periphery). (b) the same as (a) but for location 2 (hospital periphery) and 207 

6.10-8.40am on the 13th of October 2022. (c) and (d) show overview maps on the same scale for 208 

locations 1 and 2, respectively. The red dot indicates the sensor location and the blue arrow the 209 

viewing direction of the sensor camera. Dashed green lines indicate signalised pedestrian crossings. 210 

(d) is rotated clockwise by 90 degrees and the writing runs west to east in both (c) and (d). In (d) traffic 211 

islands are indicated but these do not substantially change the width of the road contrary to the display 212 

on the map. Maps in (c) and (d) are from www.openstreetmap.org (accessed 22nd of August 2023). 213 

 214 

 215 

2.2. Data preparation 216 

All data preparation and analysis are conducted in the R programming environment, version 4.3.1 (R 217 

Core team, 2023). Detecting road crossings by pedestrians first requires projecting latitude longitude 218 

coordinates onto a two-dimensional coordinate system. For this, we use the Universal Transverse 219 

http://www.openstreetmap.org/
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Mercator (UTM) projection and UTM zone 30 implemented in the R package “sf”, version 0.9-4 220 

(Pebesma, 2018). We then identify the centre line of the road for both locations, project each observed 221 

pedestrian position onto this line, and determine the direction along the centre line orthogonal from 222 

the pedestrian position to the projected point to determine which side of the road the pedestrian 223 

position is on. Road crossings by pedestrians are identified as tracklets which contain positions on both 224 

sides of the centre line of the road. We measure speed observations of pedestrians by dividing their 225 

displacement between consecutively recorded positions by the time difference between these 226 

observations. We find that some speeds exceed a reasonable threshold, even when allowing for 227 

measurement errors. Tracklets are defined as speed outliers when one of the observed speeds in the 228 

tracklet exceeds 10 m/s. We repeat the entire analysis of this study twice, once without speed outliers, 229 

and once for all data. As our findings are broadly comparable, we only report the former analysis 230 

(without outliers) in the main text and show results from the latter analysis in the supplementary 231 

material. The approximate timing and location of road crossings is identified as the first observation 232 

after pedestrians have changed which side of the road centre line they are on. This is only an 233 

approximation but determining the exact centre line crossing point and time would require 234 

interpolating between observed locations using velocity estimates that are subject to measurement 235 

errors. Aggregating approximate locations and timings over many observed road crossings will 236 

nevertheless provide meaningful insights. 237 

 To study correlations between the occurrence of pedestrian road crossings, other traffic 238 

characteristics, and extraneous factors, we compute several summary statistics. All summary statistics 239 

are initially obtained for 5 minute intervals and subsequently averaged across hours of the day to 240 

obtain hourly data for our entire study period resulting in time series of n=2,879 data points (one hour 241 

is lost due to the clocks changing from winter to summer time). The main variable of interest in this 242 

study is the time series of the number of pedestrian crossings. We also consider the time series of 243 

pedestrian, cyclist, and motorised vehicle counts. For these, we use the data from the virtual count 244 

lines, as it has been validated by the sensor provider (see below). For location 2 (hospital periphery), 245 

the count lines only cover part of the road which is a limitation of our study. To further characterize 246 

traffic, we calculate time series of average speeds and the coefficient of variation of speeds for 247 

motorised vehicles and cyclists. According to the speed-density relationship in road traffic, average 248 

speeds for motorised vehicles depend on the overall traffic volume (counts). Therefore, we do not 249 

consider both counts and average speeds at the same time in our statistical analysis. The coefficient of 250 

variation of speeds indicates the variability of speeds relative to the average speed and could be useful 251 

for distinguishing stop-and-go traffic from smoothly running traffic. As extraneous factors, we consider 252 

weekends and holidays (3rd of January, instead of New Years Day and 15th, and 18th of April 2022 for 253 

Good Friday and Easter Monday, respectively), and term time at the university when classes are 254 

running (24th of January – 1st of April and 25th of April – 30th of April 2022 for our data collection period). 255 

 256 

2.3. Sensor validation 257 

The visible measurement errors in road user positions provided by the sensors highlights the 258 

importance of validating sensor accuracy. We do so by confirming that speed measurements taken 259 

from the sensors are reasonable, by reporting the road user count accuracy provided by the sensor 260 

provider, and by comparing our automated detection of road crossings to manual counts. 261 

The average speeds for pedestrians crossing the road take values 2.48±1.17 m/s (mean ± 262 

standard deviation) at location 1 and 1.82±1.05 m/s at location 2 (including outliers average speeds 263 

are 4.79±6.22 m/s and 4.40±8.27 m/s, respectively). These speeds are higher than average walking 264 

speeds at crossings reported elsewhere to be between 1.1-1.55 m/s (Amini et al., 2019; Forde & Daniel 265 

2021), although not far off the maximum crossing speeds of around 2.4 m/s that have been observed 266 

in studies at midblock crossings (Govinda et al., 2020). Average hourly speed and standard deviation 267 



7 
 

is 3.71±1.45 m/s for cylists and 8.46±1.86 for cars at location 1 (university periphery) and 4.34±1.30 268 

m/s for cyclists and 6.84±1.64 for cars at location 2 (hospital periphery). The speed limit at both 269 

locations is 20 mph (miles per hour, approximately 8.94 m/s). 270 

The sensor provider conducted a validation of counts reported by sensors by comparing them 271 

to manual counts. This validation was completed between 12noon and 5pm on either the 30th or the 272 

31st of August 2022 for 10 minute intervals for each count line. At location 1, sensor accuracies were 273 

98% for vehicles (202 true positives, 5 false negatives), 100% for pedestrians (34 true positives), and 274 

100% for cyclists (14 true positives). At location 2, sensor accuracies were 99% for vehicles (132 true 275 

positives, 1 false positive), 94% for pedestrians (73 true positives, 5 false positives), and 100% for 276 

cyclists (4 true positives). 277 

On the 14th of June 2022, we conducted two manual counts of pedestrian crossings at location 278 

1 from 12.40pm-12.55pm and from 1.00pm-1.15pm. Across both time periods, a total of 26 pedestrian 279 

crossings were counted manually (this includes 11 crossings completed by one of the researchers). Out 280 

of these, 24 were correctly detected by the sensor (true positives), 2 were not detected (false 281 

negatives), none that did not happen were detected by the sensor (false positives), and a total of 97 282 

pedestrians passed the location without crossing (true negatives). This implies an accuracy of 98%. 283 

 284 

2.4. Statistical analysis 285 

Our statistical analysis of the road crossing number time series considers its characteristic temporal 286 

patterns and its correlation with traffic characteristics and extraneous factors. 287 

 To determine the characteristic temporal patterns, we consider time of day, day of the week, 288 

and monthly variation. We compute the averaged pattern at these timescales alongside bootstrapped 289 

95% confidence intervals using the R package “openair”, version 2.9-1 (Carslaw & Ropkins, 2012). 290 

 We use regression models to investigate correlations of road crossing numbers with traffic 291 

characteristics and extraneous factors. As the road crossing time series shows clear and repeating 292 

patterns and thus strong autocorrelation, it is not appropriate to apply standard regression models 293 

directly to the counts of road crossings. To overcome this problem, we consider the number of 294 

crossings divided by the pedestrian count for the corresponding hour in our regression analysis 295 

Instances where no pedestrians are present in a given hour are given the value zero. The clear and 296 

repeating patterns in the pedestrian count time series render this new time series of the proportion 297 

of pedestrian crossings suitable for standard regression models and we verify this as explained below. 298 

For simplicity and ease of interpretation, we use Linear models in our analysis, even though there are 299 

known problems in applying them to proportion data. Importantly, Linear models assume that 300 

residuals (the difference between model fit and observation) follow a Normal distribution with mean 301 

zero and constant variance. We assess whether these assumptions are met using residual plots that 302 

are discussed in the text and reported in the supplementary information. We use the Akaike 303 

Information Criterion to determine if vehicle count or mean vehicle speed is a more suitable predictor, 304 

and we use Likelihood ratio tests to determine if summary statistics on bike traffic improve model fit. 305 

All models include an intercept, and having assessed that it is not correlated to other predictors, all 306 

models also include the vehicle speed coefficient of variation (vehicle speed CV). All models also 307 

include binary predictors for weekend and term time, where the estimated coefficient measures the 308 

effect of weekends and term time, as opposed to weekdays and time periods without teaching at the 309 

university, respectively. We emphasise that all measured effects are only indicative of correlations and 310 

not causal relationships. 311 

 To assess the temporal coincidence of road crossings, we consider the times at which 312 

pedestrian road crossings were observed. If road crossings are clustered temporally, this indicates that 313 

pedestrians cross the road together, either because they are walking together in a social group, or 314 

because traffic conditions are favourable for crossing the road, for example. We construct a regular 315 
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binary time series of time bins and determine for each bin whether at least one crossing occurs within 316 

the time bin (time series value 1) or not (time series value 0). We then use runs tests, as implemented 317 

in the R package “DescTools” (Signorell et al., 2021), to assess if the distribution of runs of consecutive 318 

zeros or ones is equal to the number expected under a random distribution of the same number of 319 

zeros and ones as in the time series considered. We consider time bins of 5 s, 10 s, and 50 s in this 320 

analysis. 321 

 322 

3. Results 323 

 324 

3.1. Temporal characteristics of traffic and road crossing numbers 325 

Over the entire study period, we count 160,654 cyclists, 692,597 pedestrians, and 1,712,188 vehicles 326 

at location 1 (university periphery). The counts for location 2 (hospital periphery) are lower with 327 

100,859 cyclists, 559,585 pedestrians, and 1,426,130 vehicles but this is likely due to the count lines 328 

not covering the entire width of the road at this location. The difference between locations is reversed 329 

for the number of observed pedestrian road crossings. At location 1, we count 9,921 crossings, and at 330 

location 2, we count 28,472. For both locations, there are a considerable number of speed outliers, 331 

and we consequently only use data from 5,521 and 20,990 crossings for locations 1 and 2, respectively 332 

(we repeat our analysis for all data). These numbers suggest that road crossings occur frequently at 333 

both locations, even though signalised road crossings are available nearby. 334 

 Figure 2 shows that traffic at location 1 shows clear temporal patterns. All transport modes 335 

show the expected diurnal pattern with low traffic volumes at night. On weekdays but not on weekends, 336 

cycle traffic shows distinct morning and afternoon peaks indicative of commuter traffic. On most 337 

weekdays but not on weekends and possibly Wednesdays, pedestrian traffic shows three peaks. The 338 

peaks in the morning and afternoon are likely to be linked to working or studying patterns, and the 339 

midday peak may be due to people getting lunch. Vehicle traffic also shows one early and one late 340 

peak, although these are not as clearly delineated as for cycle traffic, and vehicle traffic remains high 341 

throughout the day. On weekends, traffic generally increases later and is somewhat higher at night 342 

which may be due to people going out (bars and nightclubs are close to location 1). January has lower 343 

traffic volumes than the other months, although this could be largely due to the holidays around 344 

Christmas and New Year, and the fact that university teaching only started on the 24th of January 2022. 345 

The temporal traffic patterns at location 2 are comparable to those at location 1, except for location 1 346 

having a stronger weekday midday peak in pedestrian traffic (supplementary figure S1). 347 

The temporal patterns in road crossings differ between locations 1 and 2 (Figures 3 and 4). At 348 

location 1, the peak in crossings occurs on or just after midday on weekdays, whereas at location 2, 349 

crossing number is the highest in the morning around 7am or 8am. Location 1 shows increased levels 350 

of crossings during the weekend between 2am and 4am. This does not occur at location 2, where the 351 

weekday morning peak persists on weekends and there is an additional evening peak at around 7pm. 352 

While we can only speculate, it is reasonable to suggest that these differences could be due to the 353 

proximity of different service providers to the two locations. While the university is closed over the 354 

weekend, the hospital is open, and there are more bars and nightclubs near to location 1 that location 355 

2. The temporal patterns in road crossings at both locations are the same when outliers are not 356 

removed (supplementary figure S2 and S3). 357 

We observe that even though the shape of the temporal pattern in pedestrian counts is similar 358 

for both locations, except for a more pronounced weekday midday peak at location 1, the temporal 359 

pattern in road crossing numbers is not. This suggests that there are location-specific behavioural 360 

drivers for crossing the road and these could be linked to the desire for reaching/leaving workplaces 361 

or food outlets quickly, as indicated above. Removing speed outliers does not affect the shape of 362 

temporal patterns. We also investigate if speed outliers occur at specific places along the road centre 363 
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line. For example, tracklets further away from sensors may involve higher measurements errors. 364 

However, we do not find consistent patterns along those lines. For location 1, speed outliers occur 365 

more frequently at intermediate distances from the sensor, whereas at location 2 they occur more 366 

frequently closer to the sensor (Supplementary figures S4 and S5). 367 

 368 

 369 
Figure 2: Characteristic traffic patterns from 1st of January to 30th of April 2022 at location 1 (university 370 

periphery). Average counts for road crossings, bikes, pedestrians, and motorised vehicles are shown 371 

with bootstrapped 95% confidence intervals (n=100 bootstrap samples). Counts of pedestrians 372 

crossing the road are substantially lower that the other counts. Starting at the top, and moving in an 373 

anti-clockwise direction, the average hourly counts for the different days of the week, the average 374 

hourly count pattern, the average monthly counts, and the average daily counts for the different days 375 

of the week are displayed. 376 

 377 
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 378 
Figure 3: Characteristic patterns in road crossing counts from 1st of January to 30th of April 2022 at 379 

location 1 (university periphery). Average counts for road crossings with bootstrapped 95% confidence 380 

intervals are shown (n=100 bootstrap samples). The same summary plots as in figure 2 are shown. 381 

 382 
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 383 
Figure 4: Characteristic patterns in road crossing counts from 1st of January to 30th of April 2022 at 384 

location 2 (hospital periphery). Average counts for road crossings with bootstrapped 95% confidence 385 

intervals are shown (n=100 bootstrap samples). The same summary plots as in figure 2 are shown. 386 

 387 

 388 

3.2. Relationships between road crossings, traffic, and extraneous variables 389 

To study the correlation between the proportion of road crossings of the total pedestrian count and 390 

traffic variables, we first fit two models to our data, one including vehicle speed CV and vehicle count 391 

as predictors, the other with vehicle speed CV and average vehicle speed as predictors. The resulting 392 

differences in AIC values between models, ΔAIC, indicate that vehicle count is a more suitable predictor 393 

(ΔAIC=109 and ΔAIC=216 for locations 1 and 2, respectively). Considering cycle traffic, we only consider 394 

the number of cyclists present, as other cycle traffic characteristics leads to many missing values due 395 

to the many hours when no cyclists pass our study locations, and find that it does not substantially 396 

improve model fit (Likelihood-ratio test, location 1: 𝛸1
2 = 2.1416 , 𝑝 = 0.1434 ; location 2: 𝛸1

2 =397 

0.3771, 𝑝 = 0.5392). We then add the binary predictors for weekend and term time to our model and 398 

report the results of our model fit in table 1 for location 1 and table 2 for location 2. We confirm that 399 

the predictors included in our models are not correlated, as required for the type of regression model 400 

we use here. 401 

 For location 1, we find that all predictors, except for term time, have low p-values, suggesting 402 

they are correlated with the number of road crossings divided by the total pedestrian count (table 1). 403 

In contrast, at location 2, only the vehicle count has a very low p-value (table 2). Vehicle speed CV and 404 

term time also have p-values lower than 0.1 but given the number of data points, a clearer indication 405 

of a statistically significant correlation would be expected. The signs of model parameter estimates are 406 

the same for both locations suggesting that the relationships between variables is similar for both 407 

locations. Vehicle count has the strongest effect and coincides with a lower value of the dependent 408 
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variable. Vehicle speed CV and weekends coincide with higher values of the dependent variable. The 409 

parameter associated with term time is negative, this p-values for this variable suggest we cannot 410 

reject the null hypothesis that it is not correlated with the dependent variable at either location. While 411 

the proportion of road crossings of the total pedestrian count cannot be compared directly to the 412 

temporal patterns discussed in section 3.1, our findings support our earlier observation that weekends 413 

lead to changes in crossing patterns at location 1, but not at location 2. In line with previous work on 414 

road crossings at uncontrolled locations, we find that vehicle traffic volume is relevant for crossing 415 

behaviour, even at the aggregated level that we consider here. The fact that cycle traffic does not play 416 

the same role is perhaps not surprising, given the difference in vehicle and cycle traffic at out study 417 

locations (see Figure 2 and Supplementary figure 1). 418 

 Assessing whether the assumptions of linear regression hold for our data using residual plots 419 

reveals that dividing road crossing numbers by the total pedestrian count appears to successfully 420 

mitigate autocorrelation issues, but the distributional assumptions are not met, as residual 421 

distributions are more skewed that would be expected under a Normal distribution (Supplementary 422 

figures S6 and S7). As such, the outcomes of our hypothesis tests should be treated with caution. As 423 

we only use regression models for an exploratory analysis and we can only study correlations with this 424 

analysis, we refrain from implementing an alternative approach, but we discuss this further in section 425 

4. 426 

 Repeating our regression analysis for all data, including speed outliers, yields qualitatively 427 

similar results to the analysis reported here (see Supplementary tables S1 and S2). The only qualitative 428 

difference is that for location 2, the p-value associated with term time is lower than 0.05 (see 429 

Supplementary table S2). Thus, there could be an indication that during term time the number of 430 

crossings per observed pedestrian is somewhat lower at location 2. 431 

 432 

Table 1 433 

Multiple linear regression model fit to road crossing data for location 1 (university periphery). Data 434 

without speed outliers is used (n=2,877 due to missing values). The dependent variable is the hourly 435 

number of road crossings, divided by the pedestrian number in the corresponding hour. The model 436 

includes an intercept, two continuous independent variables (hourly vehicle count and hourly average 437 

of vehicle speed coefficient of variation, CV), and two binary independent variables (weekend and term 438 

time; the measured effect is for weekend days and national holidays, and for days during term-time 439 

when teaching is taking place at the university, respectively). The table shows parameter estimates, 440 

estimated standard errors (SE), the test statistic for the parameter specific test (T), and the 441 

corresponding p-value (P; null hypothesis, H0: parameter = zero). P-values <2x10-16 are smaller than 442 

the numerical precision of the statistical software. P-values lower than 0.05 are shown in bold. Effect 443 

ranges for vehicle counts and coefficient of variation in vehicle speeds are [-0.0430,0] and 444 

[0.00318,0.0455], respectively (rounded to 3 significant figures). 445 

Coefficient Estimate SE T P 

Intercept 1.565x10-2 2.351x10-3 6.655 3.38x10-11 
Vehicle count -3.002x10-5 2.706x10-6 -11.093 < 2x10-16 
Vehicle speed CV 1.603x10-2 2.248x10-3 7.128 1.28x10-12 
Weekend 7.799x10-3 1.780x10-3 4.381 1.22x10-5 
Term time -3.085x10-4 1.711x10-3 -0.180 0.857 

 446 

Table 2 447 

As table 1 but for location 2 (hospital periphery). Data without speed outliers is used (n=2,867 due to 448 

missing values). Effect ranges for vehicle counts and coefficient of variation in vehicle speeds are [-449 

0.0918,0] and [0.00583,0.0327], respectively (rounded to 3 significant figures). 450 
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Coefficient Estimate SE T P 

Intercept 9.612x10-2 8.542x10-3 11.253 < 2x10-16 
Vehicle count -9.952x10-5 6.675x10-6 -14.909 < 2x10-16 
Vehicle speed CV 1.215x10-2 6.795x10-3 1.788 0.0739 
Weekend 4.512x10-3 3.889x10-3 1.160 0.2461 
Term time -6.561x10-3 3.562x10-3 -1.842 0.0656 

 451 

 452 

 453 

3.3. Temporal and spatial coincidence of consecutive crossings 454 

Our runs tests on binned time series for pedestrian road crossing occurrence show that crossings are 455 

more clustered in time than would be expected if time bins with crossings occurred randomly and 456 

independently from each other. Considering time bins of 5 s, at location 1 we observe r=9,992 runs 457 

(segments of time series without change in value) for a time series with k=1,030,455 bins without 458 

crossings and m=5,203 bins with crossings (some bins include more than one crossing), which results 459 

in a test statistic Z=-53.847 and a p-value lower than 2.16x10-16, below the numerical precision of the 460 

statistical software (for location 2, we find r=37,486, k=2,052,685, m=19,769, Z=-61.689, p<2.16x10-16). 461 

Changing the bin size of the time series to 10 s or 50 s yields the same results, qualitatively (details not 462 

reported here). 463 

 To investigate the coincidence of observed road crossings further, we consider the bivariate 464 

distribution of the time difference and distance between consecutive crossings (Figures 5 and 6). We 465 

first consider the marginal distributions. At both locations the frequency of distances between 466 

consecutive crossings decreases monotonically as distances increase. Such a distribution is consistent 467 

with the situation when crossings occur approximately uniformly randomly along the stretch of road. 468 

For comparison, consider a scenario with only two crossing sites. This would result in peaks in the 469 

distribution around zero and around the distance between the crossing sites. This suggests that overall 470 

pedestrians cross the road along the entire stretch covered by the sensors (see also Supplementary 471 

figures S4 and S5 which provide more information on where pedestrians cross). The frequency of time 472 

differences shows a clear mode at around 2 minutes for both locations. However, the distribution also 473 

has a pronounced tail towards zero and the distribution for location 1 has a second peak at around 2 474 

seconds (Figure 5). These skewed or even multimodal distributions indicate temporal clustering of 475 

crossings, as also suggested by our runs test analysis. The bivariate distributions for both locations 476 

show consecutive road crossings that are close in time and space. This likely suggests that pedestrians 477 

either walk together in social groups or groups created externally (e.g., by individuals disembarking 478 

from a bus and wanting to cross the road), or that vehicle traffic conditions lead to situations 479 

particularly suited for crossing the road. Consecutive road crossings that are close in time but distant 480 

in space are not observed, even though this could be a plausible scenario if traffic is stopped by a 481 

nearby traffic light, creating opportunities for crossing along the entire stretch of road. 482 

 483 
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 484 
Figure 5: Bivariate distribution of the time difference, Δt, and distance between consecutive road 485 

crossings and corresponding marginal distributions for location 1 (university periphery). Note the log 486 

scale for time differences (values of 7.5 and 11.7 on this axis correspond to 2 seconds and 2 minutes, 487 

respectively). 488 

 489 
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 490 
Figure 6: Bivariate distribution of the time difference, Δt, and distance between consecutive road 491 

crossings and corresponding marginal distributions for location 2 (hospital periphery). Note the log 492 

scale for time differences. 493 

 494 

 495 

4. Discussion 496 

 497 

We find clear evidence for temporal patterns in the number of pedestrians crossing the road at 498 

unmarked locations. These patterns differ across the two locations studied, even though overall 499 

temporal traffic patterns including pedestrian traffic are broadly similar for both locations. To the best 500 

of our knowledge, this has not been reported before, and we suggest it is indicative for changes in 501 

pedestrian road crossing behaviour throughout the day. Based on our study sites, we hypothesise that 502 

a larger proportion of pedestrians wanting to reach and leave work or food outlets could be motivating 503 

factors for changes in aggregated observed behaviour. Further work is needed though to ascertain this. 504 

Nevertheless, the difference in temporal patterns across locations has implications for research and 505 

road safety design. Considering research, our findings support Zhang & Fricker (2021), who suggest 506 

that temporal patterns could mask other factors. For example, suppose a peak in road crossings 507 

coinciding with rush hour for traffic at one location, but not at another location, similar to what we 508 

observe here. If this temporal pattern was not accounted for, different relationships between road 509 

crossing numbers and traffic characteristics could be found for the two locations and may even average 510 

out, if data from both locations was combined. Considering road safety design, peaks in crossing 511 

behaviour could be de-risked by enforcing time-limited speed restrictions on roads, as is commonly 512 

done to reduce noise or air pollution. 513 

 We also investigate the relationship of road crossings as a fraction of the total pedestrian 514 

numbers with traffic characteristics and other extraneous variables. We find differences between 515 
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locations that are in line with the differences in observed temporal patterns, namely that weekends 516 

have no effect at location 2 near to the hospital. In line with previous work (Wang et al., 2021), traffic 517 

volume appears to be relevant consistently with higher traffic volumes coinciding with a lower 518 

proportion of pedestrians crossing. The effect of other variables, such as term time or vehicle speed 519 

CV is less clear, especially when also considering the analysis that includes speed outliers. This echoes 520 

aspects of the findings of meta-analyses on factors important in determining pedestrian crossing 521 

behaviour where the effect of several factor was inconclusive even when considering the evidence 522 

from many studies (Ghomi & Hussein, 2022; Theofilatos et al., 2021). We suggest that our findings in 523 

this regard should be treated with caution for two main reasons. First, studies on observational data 524 

always risk missing important factors, the inclusion of which in a statistical analysis could change the 525 

observed patterns substantially. Second, as discussed above, our choice of regression model was 526 

driven by interpretability and simplicity. Alternative regression models, such as the ones suggested by 527 

Zhang & Fricker (2021) to account for temporal variability, or autoregressive models fitted to the 528 

crossing count time series, could yield a statistically more robust model fit and inference. Another 529 

limitation of our data that warrants caution is the fact that the count lines at location 2 do not cover 530 

the entire width of the road. As such, the estimated coefficients should not be compared quantitatively 531 

across locations. The quantitative findings should also be considered in the context of the time period 532 

when data was recorded. Whilst no travel restrictions due to the Coronavirus pandemic were in place 533 

in the UK (Brown & Kirk-Wade, 2021), they were in force elsewhere, impacting the ability of a 534 

proportion of the large population of international students in Bristol to attend classes in person.  An 535 

offering of online teaching may have also been taken up by other students, possibly reducing the 536 

overall movement of students to and from the university. Whilst it is important to consider them, these 537 

aspects do not invalidate our findings or methodology. 538 

 Considering the temporal and spatial coincidence of crossings, we find evidence for 539 

pedestrians crossing together with others. Given that many pedestrians walk in groups with others, 540 

this is not unexpected. Alternative drivers for this behaviour, such as pedestrians crossing at the same 541 

time to catch an arriving bus, are also likely to be relevant. Whilst our work and previous work suggest 542 

traffic conditions impact crossing decisions (Ghomi & Hussein, 2022; Theofilatos et al., 2021), we do 543 

not find evidence suggesting that crossing decisions occur concurrently along an entire stretch of road, 544 

as could be expected under suitable traffic conditions, such as stopped traffic.  545 

 546 

5. Conclusions 547 

 548 

In summary, we suggest that temporal variation in pedestrian behaviour at unmarked road crossings 549 

exists, can vary substantially across locations, and should thus be considered in research and road 550 

safety design. Given the variation we observe over a small spatial scale (two locations in the same city 551 

on the same road), we propose that substantially more work is needed to be able to predict this 552 

temporal variation, even if detailed traffic data is available. Until this is the case, it could be beneficial 553 

to monitor locations where interventions are planned continuously for several months, to avoid 554 

missing opportunities for finding the most effective road safety solutions. Our work serves as a proof 555 

of principle, demonstrating that despite measurement errors, it is possible to detect temporal patterns, 556 

investigate driving factors for crossing numbers, and even query behaviours impacting the temporal 557 

and spatial coincidence of crossings using commercially available sensors at busy urban locations. If 558 

data from such sensors is consistently shared with researchers, it holds the potential to transform our 559 

understanding of pedestrian road safety. 560 

 561 

References 562 

 563 



17 
 

Acharya, S., & Marsani, A. (2019). Modelling the Relationship between Pedestrian Illegal Mid-Block 564 

Crossings with Traffic and Geometric Parameters. International Journal of Advanced Engineering and 565 

Management, 4(1). 566 

 567 

Aden, W. A., Zhao, S., Subhan, F., Zhou, H., & Ullah, I. (2020). A Comparative Study on Pedestrians' 568 

Intention to Violate Traffic Rules: The Case of China and Djibouti. Journal of Road and Traffic 569 

Engineering, 66(3), 1-9. 570 

 571 

Amini, E.R., Katrakazas, C., & Antoniou, C. (2019). Negotiation and decision-making for a pedestrian 572 

roadway crossing: A literature review. Sustainability, 11(23), 6713. 573 

 574 

Anik, M. A. H., Hossain, M., & Habib, M. A. (2021). Investigation of pedestrian jaywalking behaviour at 575 

mid-block locations using artificial neural networks. Safety science, 144, 105448. 576 

 577 

Asaithambi, G., Kuttan, M. O., & Chandra, S. (2016). Pedestrian road crossing behavior under mixed 578 

traffic conditions: a comparative study of an intersection before and after implementing control 579 

measures. Transportation in developing economies, 2(2), 14. 580 

 581 

Brown, J. & Kirk-Wade, E. (2021). Coronavirus: S history of 'Lockdown laws' in England. House of 582 

Commons Library, Number 9068. 583 

 584 

Carslaw, D.C. & Ropkins, K. (2012). “openair — An R package for air quality data analysis.” 585 

Environmental Modelling & Software, 27–28(0), 52–61. 586 

 587 

Department for Transport (2022). Reported Road Casualties Great Britain: Pedestrian Factsheet 2021. 588 

https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-pedestrian-589 

factsheet-2021 (accessed 31/08/2022). 590 

 591 

Dommes, A., Cavallo, V., Vienne, F., & Aillerie, I. (2012). Age-related differences in street-crossing safety 592 

before and after training of older pedestrians. Accident Analysis & Prevention, 44(1), 42-47. 593 

 594 

Dommes, A., Cavallo, V., Dubuisson, J. B., Tournier, I., & Vienne, F. (2014). Crossing a two-way street: 595 

comparison of young and old pedestrians. Journal of safety research, 50, 27-34. 596 

 597 

Feldstein, I. T., & Dyszak, G. N. (2020). Road crossing decisions in real and virtual environments: A 598 

comparative study on simulator validity. Accident Analysis & Prevention, 137, 105356. 599 

 600 

Forde, A., & Daniel, J. (2021). Pedestrian walking speed at un-signalized midblock crosswalk and its 601 

impact on urban street segment performance. Journal of traffic and transportation engineering 602 

(English edition), 8(1), 57-69. 603 

 604 

Ghomi, H., & Hussein, M. (2022). An integrated text mining, literature review, and meta-analysis 605 

approach to investigate pedestrian violation behaviours. Accident Analysis & Prevention, 173, 106712. 606 

 607 

Govinda, L., Abhigna, D., Nair, P. M., & Shankar, K. R. (2020). Comparative study of pedestrian crossing 608 

behaviour at uncontrolled intersection and midblock locations. Transportation Research Procedia, 48, 609 

698-706. 610 

 611 



18 
 

Hough, W. P. (2022). Street Rivalry Reignited? Repealing the Jaywalking Paradigm. UMKC Law Review, 612 

91, 455. 613 

 614 

Kadali, B. R., & Vedagiri, P. (2013). Modelling pedestrian road crossing behaviour under mixed traffic 615 

condition. European transport, 55(3), 1-17. 616 

 617 

Kadali, B. R., & Vedagiri, P. (2016). Proactive pedestrian safety evaluation at unprotected mid-block 618 

crosswalk locations under mixed traffic conditions. Safety science, 89, 94-105. 619 

 620 

Norton, P. D. (2007). Street rivals: Jaywalking and the invention of the motor age street. Technology 621 

and culture, 48(2), 331-359. 622 

 623 

Pebesma, E., (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 624 

10 (1), 439-446, https://doi.org/10.32614/RJ-2018-009 625 

 626 

Pour, A. T., Moridpour, S., Tay, R., & Rajabifard, A. (2017). Modelling pedestrian crash severity at mid-627 

blocks. Transportmetrica A: Transport Science, 13(3), 273-297. 628 

 629 

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for 630 

Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ (accessed 23/08/23). 631 

 632 

Sheykhfard, A., Haghighi, F., Papadimitriou, E., & Van Gelder, P. (2021). Analysis of the occurrence and 633 

severity of vehicle-pedestrian conflicts in marked and unmarked crosswalks through naturalistic 634 

driving study. Transportation research part F: traffic psychology and behaviour, 76, 178-192. 635 

 636 

Signorell, A. et al. (2023). DescTools: Tools for descriptive statistics. R package version 0.99.48. 637 

 638 

Soares, F., Silva, E., Pereira, F., Silva, C., Sousa, E., & Freitas, E. (2021). To cross or not to cross: Impact 639 

of visual and auditory cues on pedestrians’ crossing decision-making. Transportation research part F: 640 

traffic psychology and behaviour, 82, 202-220. 641 

 642 

Theofilatos, A., Ziakopoulos, A., Oviedo-Trespalacios, O., & Timmis, A. (2021). To cross or not to cross? 643 

Review and meta-analysis of pedestrian gap acceptance decisions at midblock street crossings. Journal 644 

of Transport & Health, 22, 101108. 645 

 646 

Wang, Y., Shen, B., Wu, H., Wang, C., Su, Q., & Chen, W. (2021). Modeling illegal pedestrian crossing 647 

behaviors at unmarked mid-block roadway based on extended decision field theory. Physica A: 648 

Statistical Mechanics and its Applications, 562, 125327. 649 

 650 

Zhang, Y., & Fricker, J. D. (2021). Investigating temporal variations in pedestrian crossing behavior at 651 

semi-controlled crosswalks: A Bayesian multilevel modeling approach. Transportation research part F: 652 

traffic psychology and behaviour, 76, 92-108. 653 

 654 

Zhu, H., Almukdad, A., Iryo-Asano, M., Alhajyaseen, W. K., Nakamura, H., & Zhang, X. (2021). A novel 655 

agent-based framework for evaluating pedestrian safety at unsignalized mid-block crosswalks. 656 

Accident Analysis & Prevention, 159, 106288. 657 

https://doi.org/10.32614/RJ-2018-009
https://www.r-project.org/

