
1 
 

Kinect Server Data Acquisition: 
Compilation and Running Requirements and Directions 

Vahid Soleimani, Majid Mirmehdi, Dima Damen, Sion Hannuna, Massimo Camplani 

This document introduces hardware and software resources required for compiling and 

running the source code of “Kinect data Acquisition” system [1]. It also explains how 

to establish the necessary libraries dependencies to be able to successfully compile and 

run the source code. Further, the software specifications and details, and the format of 

its output data are described in this document. 

1- Requirements and Dependencies  

The following hardware, software and libraries are required to successfully compile 

and run the source code.  

 A second generation of Kinect for Windows 

 A Kinect−compatible Microsoft Windows (8.1 or 10) PC or laptop 

 Microsoft Visual Studio C++ 

 Kinect for Windows SDK 2.0 

 Intel® Threading Building Blocks (TBB) 

 OpenCV 

According to Microsoft, not all laptops and PCs are compatible with Kinect V2. A 

detailed information about hardware and software requirements can be found in this 

page and also here. The Kinect data acquisition source code has been developed and 

successfully compiled under Microsoft Visual Studio C++ 2012, but you can also use 

the later versions if the following dependencies have been provided for them. Kinect 

for Windows SDK 2.0, Intel® Threading Building Blocks and OpenCV are the libraries 

which are required for compiling and executing the source code. Establishment of these 

libraries dependencies in Visual Studio 2012 is explained in Section 2. 

2- Visual Studio Dependencies Establishment 

After opening the solution file, provided in the repository, active solution platform and 

configuration must be changed to x64 and Released, respectively, as shown in Fig. 1. 

Kinect for Windows SDK 2.0 – This standard library is provided by Microsoft and is 

essential for making the Kinect work under Microsoft Windows. It is released under 

free commercial license and can be downloaded from here. After installation, SDK 

provides a default environment variable named KINECTSDK20_DIR, which is used to 

add the SDK include and library dependencies to Visual Studio. First, the project 

property page must be opened (Fig. 2a), and then project “Additional Include 

Directories” page can be accessed through steps 1 to 3 in Fig.2b.  

https://developer.microsoft.com/en-us/windows/kinect/hardware-setup
https://developer.microsoft.com/en-us/windows/kinect/hardware-setup
https://msdn.microsoft.com/en-gb/library/dn782036.aspx
https://www.microsoft.com/en-gb/download/details.aspx?id=44561


2 
 

 
(a) 

 
(b) 

Fig.1: (a) Change the platform to x64, (b) Changing the active solution configuration to Release. 

  
(a) 

 
(b) 

Fig.2: (a) Accessing the “project property page”, (b) Accessing the “Additional Include Directories”. 



3 
 

Any required include directory can be added in “Additional Include Directories” page 

(Fig. 3), by either using the absolute path or using the environment variable. For the 

Kinect SDK, the default environment variable is used as shown in Fig. 3. 

 

Fig.3: Adding required includes to the project “Additional Include Directories” page. 

To add Kinect SDK library, first, the library path should be declared at “Additional 

Library Directories” in the project property page. To do this, after accessing to project 

property page (Fig. 2a), “Additional Library Directories” is accessible through steps 1 

to 3 in Fig. 4a. 

 
(a) 



4 
 

 
(b) 

Fig. 4: (a) Accessing “Additional Library Directories”, (b) Adding required library directories. 

Then, Kinect SDK library path is added as $(KINECTSDK20_DIR)\Lib\x64 (Fig. 4b). 

Finally, libraries’ name that are used must be added to the “Additional Dependencies”. 

“Additional Dependencies” page can be accessed through steps 1 to 3 in Fig. 5a. For 

the Kinect SDK, the only library which must be added is kinect20.lib. 

 
(a) 



5 
 

 
(b) 

Fig. 5: (a) Accessing “Additional Dependencies”, (b) Adding required library files. 

Intel® Threading Building Blocks (TBB) − This library is used to create parallel 

threads for acquiring, visualising and recording RGB, depth and skeleton data streams 

separately at full frame rate. This library is licensed as GPLv2. Although any version 

can be used for our purpose, the version we used and tested is “tbb43_20140724oss” 

and can be downloaded from here. After extracting, an environment variable should be 

defined for the main path (e.g. C:\TBB2014\tbb43_20140724oss). We named this 

variable as TBB_DIR and used to establish include and library dependencies similar to 

Kinect SDK. After accessing to project property page (Fig. 2a), $(TBB_DIR)\include 

is added to include directories (Fig.3). $(TBB_DIR)\lib\intel64\vc11 is then added to 

the “Additional Library Directory” page using (Fig. 4b). If Visual Studio 2013 is used 

then vc11 sub-folder of $(TBB_DIR)\lib\intel64\vc11 needs to be changed to vc12.  

The only TBB library that is needed here is tbb.lib (Fig. 5b). 

OpenCV − This is an open source computer vision library, which consists of 

considerable number of computer vision programming functions and is released under 

a BSD license. Similar to TBB, any version can be used for our purpose but we tested 

our code with pre-built libraries version 2.4.11. An official and comprehensive 

explanation about installing OpenCV on Windows can be found here. The determined 

environment variable for OpenCV (here named OPENCV_DIR) is used to establish the 

dependencies similar to TBB (Figs. 2−4). However, there are more library files that 

must be added to library “Additional Dependencies” as shown in Fig. 5b. 

 

https://www.threadingbuildingblocks.org/software-release/tbb4320140724oss
http://docs.opencv.org/2.4/doc/tutorials/introduction/windows_install/windows_install.html


6 
 

Dynamic Link Libraries (DLL) – In order to successfully run the Kinect data 

acquisition software, path of binary files of third party libraries i.e. Kinect SDK, TBB 

and OpenCV, must be added to the system path. For the Kinect SDK, it is added 

automatically by installing the SDK. However, for the TBB and OpenCV, the 

following paths must be added to the system path as shown in Fig. 6.  

 %OPENCV_DIR%\bin 

 %TBB_DIR%\bin\intel64\vc11 

This can be done by accessing Environment Variables from the System Properties. 

 

Fig. 6: Adding TBB and OpenCV libraries binary files to the system path. 

3- Software and Output Data Specifications 

After compiling and building the source code successfully, the application is ready to 

be used. Fig. 7 shows a sample running of the software. 

As can be seen in Fig. 7a, the software is featured the following specifications:  

1- Recording path. 

2- RGB, depth and skeleton recording options. 

3- RGB, depth and skeleton online visualisation options. 

4- JPEG or BMP encoding option for saving RGB data frames. 

5- RGB scaling factor (0-1) to reduce the RGB image size. 

6- Start/Stop button. 



7 
 

 
(a) 

 
(b) 

Fig. 7: A sample running of the Kinect data acquisition software. 

Fig. 7b presents a sample of online visualisation of RGB, depth and skeleton data. In 

addition to saving RGB data frames in JPEG or BMP formats, and depth data frames 

in PNG format, the software also provides separate RGB, depth and skeleton Meta data 

for the whole captured sequence. 

Before data capture starts, server and client machines must be locally networked and 

their system time must be synchronised using NTP. First, a TCP/IP connection is 

established at the beginning of capture by pushing the connect! button on both server 

and client applications. Note that the server button must be pressed first. Then, both 

Kinects must be turned on by pushing Kinect ON! buttons. Data acquisition in both 

server and client machines is starts by pressing the start/stop Recording! button of the 

Server Data Acquisition application. 



8 
 

RGB and depth Meta data – For each sequence, RGB and depth Meta data are stored 

in two separate text files, named “rgbMeta.txt” and “depthMeta.txt”. These files 

present the following information for each RGB and depth captured frames: 

 system timestamp 

 Kinect provided timestamp 

 TBB thread timestamp 

 

 

Fig. 8: RGB and depth metadata files content. 

Fig. 8 shows part of an RGB and depth Meta data files. Each line of these text files 

correspond to a single captured frame. As can be seen in Fig. 8, the first column is the 

system timestamp and the second column is the frame number, which is equal to the 

corresponding the RGB and depth file names. Note that RGB and depth frames must 

be matched based on the Kinect provided timestamps, not the frame numbers.  The 

third column is Kinect provided timestamp and the last column is the TBB timestamp 

obtained from the RGB and depth frame acquisition thread. 

Skeleton Meta data – If a person appears in the Kinect field of view, their skeleton 

data is obtained and stored in a text file, named “bodyMeta.txt”. Similar to RGB and 

depth Meta data, each line is related to the corresponding depth captured frames. In 

addition to system, Kinect and TBB timestamps that are similar to the RGB and depth 

Meta data with the same storing order, skeleton body data which includes 25 joints 

position and their detection confidence, are also stored in the skeleton Meta data file. 

A quadruple is associated with each joint, in which the first number states the joint 

tracking confidence. 0 means no joint is detected, 1 means joint is weekly detected and 

2 means joint is fully detected. The other three numbers present each joint location, i.e. 



9 
 

(x, y, z), in which x and y are presented in pixel (to match depth image), and z is real 

world coordinate system (in meter). x and y can be easily converted to real world 

coordinate using the Kinect depth sensor camera parameters. Fig. 9 shows a part of 

skeleton Meta data file. 

 
 

 

Fig. 9: Skeleton metadata file content. 

Order of the joints for each frame in the skeleton Meta data file (Fig. 9) is presented is 

the Table 1. This is a standard order introduced by Microsoft. 

Table1: Skeleton metadata joints order and name.  

J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21 J22 J23 J24 

S
p
in

e−
B

as
e 

S
p

in
e−

M
id

 

N
ec

k
 

H
ea

d
 

S
h

o
u

ld
er

−
L

ef
t 

E
lb

o
w

−
L

ef
t 

W
ri

st
−

L
ef

t 

H
an

d
−

L
ef

t 

S
h

o
u

ld
er

−
R

ig
h

t 

E
lb

o
w

−
R

ig
h

t 

W
ri

st
−

R
ig

h
t 

H
an

d
−

R
ig

h
t 

H
ip

−
L

ef
t 

K
n

ee
−

L
ef

t 

A
n

k
le

−
L

ef
t 

F
o

o
t−

L
ef

t 

H
ip

−
R

ig
h

t 

K
n

ee
−

R
ig

h
t 

A
n

k
le

−
R

ig
h

t 

F
o

o
t−

R
ig

h
t 

S
p

in
e−

S
h

o
u

ld
er

 

H
an

d
T

ip
−

L
ef

t 

T
h

u
m

b
−

L
ef

t 

H
an

d
T

ip
−

R
ig

h
t 

T
h

u
m

b
−

R
ig

h
t 

Note that the correct way to synchronise RGB, depth and skeleton frames, is using 

Kinect or system timestamps rather than the frame numbers. 

References 

[1] V. Soleimani, M. Mirmehdi, D. Damen, S. Hannuna, M. Camplani, “3D Data 

Acquisition and Registration Using Two Opposing Kinects”, International 

Conference on 3D Vision, Stanford, USA. 


