Studies of Competing Evaporation Rates of Multiple Volatile Components from a Single Binary-Component Aerosol Droplet

The simultaneous evaporation and condensation of multiple volatile components from multicomponent aerosol droplets leads to changes in droplet size, composition and temperature. Measurements and models that capture and predict these dynamic aerosol processes are key to understanding aerosol microphysics in a broad range of contexts. We report measurements of the evaporation kinetics of droplets (initially ~25 ┬Ám radius) formed from mixtures of ethanol and water levitated within a electrodynamic balance over timescales spanning 500 ms to 6 s. Measurements of evaporation into a gas phase of varied relative humidity and temperature are shown to compare well with predictions from a numerical model. We show that water condensation from the gas phase can occur concurrently with ethanol evaporation from aqueous-ethanol droplets. Indeed, water can condense so rapidly during the evaporation of a pure ethanol droplet in a humid environment, driven by the evaporative cooling the droplet experiences, that the droplet becomes pure water within 0.4 s.

Creator(s) Jonathan Reid, Allen Haddrell, Rachael Miles
Publication date 10 Apr 2019
Language eng
Publisher University of Bristol
Licence Non-Commercial Government Licence for public sector information
DOI 10.5523/bris.hodiu7ak0ha62jeoruuz0qcwk
Complete download (zip) https://data.bris.ac.uk/datasets/hodiu7ak0ha62jeoruuz0qcwk/hodiu7ak0ha62jeoruuz0qcwk.zip
Citation Jonathan Reid, Allen Haddrell, Rachael Miles (2019): Studies of Competing Evaporation Rates of Multiple Volatile Components from a Single Binary-Component Aerosol Droplet. https://doi.org/10.5523/bris.hodiu7ak0ha62jeoruuz0qcwk
Total size 373.1 KiB

Data Resources